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INTRODUCTION

1.1 Summary

This report details results of research performed under AFOSR contract no. F49620-86-
K-0016. The contract was initiated on June 1, 1986 and expired on December 31, 1989.

Aerospace vehicles are often subjected to hostile thermal environments capable of
adversely affecting their life. Examples are: 1) space structures subjected to solar radiation or
other external heating sources, as well as onboard heating; 2) structural components subjected
to laser heating; and 3) aerodynamic vehicles in hypersonic flight. The structural materials
utilized in these applications may be metallic superalloys, metal matrix compositcs, or even
ceramic composites. All of these materials undergo substantial material inelasticity at elevated
temperatures. In order to accurately predict the thermomechanical response of structural
components composed of these materials, it is imperative to develop accurate constitutive models
capable of accounting for material nonlinearity in the presence of cyclic load and transient
temperature conditions. These models must be capable of accurately accounting for temperature
and history dependent constitutive properties, as well as fwo-way thermomechanical coupling
via modified heat conduction equations which are material specific. In addition, these media
may undergo extremely rapid heating rates due to the presence of large external heat sources.
Although models are currently available for some of these materials at elevated temperature,
little has been done to extend these theories to transient temperature conditions such as those
encountered in the three examples cited above.

The gen jective of this re; h i improve on existing theoretical models for
redictin I nse of inelastic aerospace structural components subject hostile thermal
nvironm with emphasis on sient tem ure condition iation nd nditions

extremely rapid heating rates, and possible phase change of the materials involved. For

materials subjected to the conditions under study herein it is necessary to perform extremely
complex experiments in order to determine the precise form of the theoretical constitutive
equations. Finally, it is necessary to implement the resulting equations to boundary value
problem solving algorithms in order to model the response of structural components with stress,
strain, and temperature gradient fields.

1.2 Statement of Work

Experimental and theoretical research were performed to characterize the response of
structural components subjected to transient temperature conditions resulting in inelastic material
behavior. The research was performed in the following stages:

1) theoretical development of thermodynamic constraints on inelastic materials under transient
temperature conditions;




2) development of modified heat conduction equations to account for two-way thermomechanical
coupling in these inelastic materials;

3) experimentation to determine further constraints on inelastic materials under transient
temperature conditions;

4) development of multi-dimensional theoretical algorithms for predicting response of the
inelastic structural components described above; and

5) experimentation to verify the theoretical algorithms described in item 4).
Items 1) through 4) above were performed entirely on the main campus at Texas A&M
University. Item 5) was performed both at the Air Force Wright Aeronautics Laboratory at
Wright Patterson Air Force Base and Texas A&M University. Details of this research will be
described further below.

RESEARCH COMPLETED
2.1 Summary of Completed Research

The results of the three year program are as summarized below:

1) a one-way coupled model was developed for the thermoviscoplastic plate subjected to
rapid laser heating (see references 1 and 2);

2) thermodynamic constraints were developed for the thermoviscoplastic medium studied
herein (see reference 2);

3) a two-way coupled model was also developed for the thermoviscoplastic plate
subjected to rapid laser heating (see Appendix 7.1);

4) a thermoviscoplastic constitutive model was developed for short fiber composites ( see
Appendix 7.2);

5) a model for determining the effects of certain forming processes on short fiber
composites was constructed (see Appendix 7.3);

6) constitutive testing and model development were performed to determine the
thermoviscoplastic constitutive behavior of Hastelloy X (see Appendix 7.4); and

7) structural tests were performed on Hastelloy X plates in the LHMEL laboratory at
WPAFB (see reference 2).




Items 1,2 and 7 above have been previously documented in the first and second annual
reports [1,2]. Items 3 through 6 are detailed in the Appendix of this report. These items are
summarized in the following sections.

2.2 Theoretical Developments

Theoretical results obtained during the course of the contract are discussed below.

2.2.1 One-Way Coupled Model

A solution algorithm has been developed by the authors for modeling the transient
response of a thin metallic plate with viscoplastic constitution subjected to rapid external heating.
The model assumes one-way coupling in the sense that the heat transfer solution is assumed to
be independent of deformations, whereas the mechanical response depends on the temperature
field. In addition to radiation boundary conditions and material inelasticity, geometric
nonlinearity has been included. A nonlinear incremental formulation for an anisotropic plate has
been developed using variational methods and finite element discretization. The algorithm
utilizes constitutive models for viscoplastic media previously proposed by Bodner and Partom
[3] and Walker [4]. The model results are briefly reviewed in this section. Further details can
be found in references 1 and 2.

The solution algorithm is constructed in two stages: the thermal analysis and the
structural analysis. The general flowchart is shown in Fig. 1. On a given time step, the thermal
loads are evaluated. Then the temperature field is solved by the finite element method.
Together with the inelastic strain increment evaluated from the previous time step, the thermal
strain results in an unbalanced load with which the deformation is approximated. Iteration will
bring the solution to equilibrium for a given time step. Due to the induced high in-plane
stresses, it is necessary to update the effective stiffness matrix in the iterative procedure.

To demonstrate the use of this model, an isotropic circular plate with fixed plate
boundary and radius r=10 in is selected. The material used is B1900+Hf, which is a nickel-
based superalloy commonly used in hot gas turbines. The plate is subjected to an instantaneous
constant heat input applied axisymmetrically about the cente. of the plate with radius 0.5 in.
The thermal boundary conditions are radiation type with reference temperature TR=0°F. The
finite element mesh diagrams for the thermal and structural analyses are shown in Fig. 2.

Figure 3 shows the history of plate center deflection for cases with and without geometric
nonlinearity. Considering the in-plane stresses, the transverse deflection is significantly
decreased, which demonstrates the importance of including geometric nonlinearity in this model.
Figures 4 through 8 are the results for cases which include geometric effects and the
viscoplasticity models. Figure 4 shows the deflection history of the plate center. When the
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inelastic material response is considered, the deflection of the plate upper surface is reduced.
Figure 5 shows the stress history at r=0.11 in of the plate upper surface. The stress is
significantly reduced by the accumulated inelastic strain. Figure 6 shows the radial stress history
predicted by Walker’s model at various positions of the plate upper surface. Figures 7 and 8
show the radial stress and hoop stress distribution at time t=0.01 sec. Figure 9 shows the in-
plane deformation and Fig. 10 shows the accumulated inelastic strain at time=0.01 sec.
Walker’s model tends to accumulate more inelastic response than Bodner and Partom’s, which
in turn predicts lower stresses.

Figures 11 through 13 show the results for plates with varying thickness and identical
external heating. Figure 11 shows the radial stress at r=0.11 in of the plate upper surface for
various plate thicknesses. Figure 13 shows the accumulated inelastic strain at time t=0.01 sec
for varying plate thickness. Figures 14 through 16 show the results for a plate with fixed
thickness and various external heating rates. Figure 14 shows that with greater external heating,
larger deflection is predicted. Figure 15 shows the stress history at r=0.11 in. Higher
compressive peak stress is induced and more inelastic strain is accumulated with greater external
heating. Figure 16 shows the stress distribution at time t=0.01 sec for different external heating
rates. Further details about the one-way coupled model can be found in references 1 and 2.

2.2.2 Two-Way Coupled Model

Whereas the one-way coupled model assumes that the strains do not affect the
temperature, the two-way coupled model assumes that this effect cannot be neglected. As shown
in Appendix 7.5, the resulting heat conduction equation for an isotropic thermoviscoplastic
medium is given by: '

kT, =pC,T + pi + (3A+2)BT,¢, - na”éilj )

where the last term is due to inelastic coupling, and the term before it accounts for elastic
coupling. These coupling terms introduce significant complexity into any solution procedure,
since the heat transfer solution can no longer be solved a priori and substituted into the
mechanical field equations. This procedure used herein was to first reduce the equations to the
case of an axisymmetric continuum (not a plate), so that the governing equations are two-
dimensional as described in Appendix 7.1. The governing equations were cast in a weak
variational form and discretized using the finite element method. Solutions were obtained using
four node quads. The computer code is available from the authors on request.

Several examples were solved for a circular plate similar to that studied in the previous
section. The material was assumed to obey the Bodner-Partom viscoplasticity model [3]. As
noted in the appendix, both mesh and time step were optimized to obtain converged results. All
results were obtained for a plate of 10 cm radius with a laser spot of 2 cm radius centered at the
plate center. The laser input was 2.5 x 10* Btu/m?, with a duration of 0.02 sec. Results have
been plotted for the in-plane and out-of-plane displacement components at the center of the plate




- q=90 Btu/in® —sec, h=0.042 in
- * —— geametric effect

4 —— geometric effect, Bodner's
— o~— geometric effect, Walker's

Deformation
0.0005

_Bﬁ

O &H

© Qll

O O

o i

o {2 5 10
&11 Lttt e g1
o

(@]

Radial Dist. (in)

Fig.9 In-plane Deformation at time=0.01 sec.

Radial Dist. (in)

= 1F||l§lr11~;

<
(@)
IR=
W)
o
-~ O
Vo
|
O
S
2
9
o °F
L ol
o
chlt ; .
= F q=90 Btu/in® —sec, h=0.042 in
RS 4, % —— geometric effect Bodner's
O r o —~ geometric effect, Walker's
o
[T} o3
sl
o
|

Fig.10 Radial Inelastic Strain Distribution at time=0.01 sec.

10




0.15
TTTTTTI 7T T[T IT T T T T [ ITTTITTTI77T]

0.10

Center Displacement (in)
0.05

q=90 Btu/inz —sec, geometrc effect
—— h=0.042 in, Walker's
— = h=0.05 in, Walker's
% £ h=0.06 in, Walker's

S S N TR N O O A SN NN S

500 1000 1500

Radial Stress (r=.11in, ksi)

—-300

Time (unit=.00001 sec)

Fig.11 Center Displacement Historv.

Time (unit=.00001 sec)

600 1200 1800
Illll||lllr|lllll_‘|
2
q=90 Btu/in —sec, geometric effect
i *¥—— h=0.042 in, V?olker's &
N\ 2-— h=0.05 in, Walker's
oF §\ °o—— h=0.06 in, Walker's
Or—-
e
oF
(@]
(?_

Fig.12 Radial Stress Historv at r=0.11 in.

11




<
(@]
£
owmw
O
- O
s
|
Q
=
4]
o
G O
Lo
o
o) |
, 2 .
S I q=90 Btu/in" —sec, geometric effect
o £ —— h=0.042 in, Walker's
o B & —— h=0.05 in, Wolker's
o] B o — h=0.06 in, Walker's
ol
T

Fig.13 Radial Inelastic Strain Distribution at time=0.01 sec.

n

— [ Walker's, h=0.042 in, geometric effect

o[ —— q=60 Btu/in® —sec

. — — q=75 Btu/in* —sec
/C\ - X ¥ q=90 Btu/in* —sec
< |
- o * -
*
c of w*
o~ >
£ of */
- *

g F N
o [ *
< E */#/
@k o
Q o «”
— ot */
v "
)
c r */,
q) e
S

S v v gy )

600 1200 1800

Time (unit=.00001 sec)

Fig.14 Center Displacement Historv.

12




Time (unit=.00001 sec)
600 1200 1800

TT T T T[T T rorrroy
geometric effect, hs=0.042 in
* —— q=60 Btu/in_ —sec, Walker's
a—— g=75 B\u/in: —sec, Walker's

r_ 0 —— q=90 Btu/in’ —sec, Walker's

—-100

~200

Radial Stress (r=.11in, ksi)

—-300

Fig.15 Radial Stress History at r=0.11 in.

Radial Dist. (in)

(@]
0
|
n
n
(4
| -
st
wn
R geometric effect, h=0.042 in
° f:_ q=60 Btu/in* —sec, Walker's
5 ~ 9=75 Btu/in? —sec. Walker's
S ok © == 9=90 Btu/in* -sec, Walker's
e Gk
it

Fig.16 Radial Stress Distribution at time=0.01 sec.

13




as functions of time. The first result shows the results obtained assuming one-way coupling and
thermoelastic material behavior (see Fig. 17). Note that the in-plane component oscillates at
about 140 Hz, while the out-of-plane component responds much more slowly.

Fig. 18 compares one-way coupled predictions for the in-plane displacement at the plate
center both with and without viscoplasticity included. Note that the inclusion of inelasticity
causes effective damping which decreases the amplitude of vibration. Of course, the result is
very similar to that obtained in the previous section, as should be expected.

In order to test the effect of the assumption that the heat input is instantaneous, the input
was changed to a linear ramp over the first 20 msec, then constant for 80 msec, and then
abruptly turned off. as shown in Fig. 19, the results are quite different from the instantaneous
results, with the in-plane displacement oscillating at a much slower frequency until the heat
source is turned off. Thereafter, a higher frequency response is observed, similar to the results
for the instantaneous input solutions. Note that the residual oscillations are centered about a
non-zero (compressive) mean, indicating the presence of a residual viscoplastic deformation.

The final result is for the case where full two-way coupling is assumed. As shown in
Fig. 20, the results for the one-way and two-way analyses coupled analysis are almost
indistinguishable. We attempted without success to induce more substantial differences by
sweeping over the input variables. In all cases the differences were insignificant. At this point
in time we feel that this is due to the fact that the viscoplastic response is restricted to a very
small zone near the plate center and is essentially nonoscillatory in nature. It is our belief that
significant two-way coupling could only be introduced by oscillating the heat input, thus
producing oscillatory inelastic deformations which would result in more substantial hysteresis.

The following is a summary of the results which we have observed after solving the
three-dimensional, axisymmetric, fully coupled, thermoviscoplastic equations for a laser heated
thin plate.

1. If the heat impulse is of sufficiently short duration, and very localized near the center
of the plate, the fundamental response is that of an elastic plate under a point load. This
is true under both stress-free and clamped boundary conditions.

2. If the heat impulse is ramped, a slow oscillation about a deformed state (which would
be given by constant thermal input) is observed. After the heat source is turned off, a
complicated return to a permanently deformed state is observed.

3. The inclusion of inelastic effects in the momentum equations accounts for about a 5-10%
change in out-of-plane displacements.

4. The inclusion of inelastic two-way coupling affects the out-of-plane displacements very
little (less that 2% observed change).

14
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5. Relatively large grids may be used away from the boundary thermal input. The time
step limitation is primarily due to the rapid thermal heating characteristic time.

6. The following appears to be the approximate ranking of effects in the boundary heated,
no external loading, axisymmetric plate problem:

a) Boundary heating, temperature response can approach 100 degrees Kelvin/sec or
more. The induced thermal stresses and strains.

b) Inelastic corrections to the deformations, and the resultant change in stress.
¢) Two-way thermoelastic coupling.
d) Two-way thermoinelastic coupling. This effect is extremely localized.

Further details about this portion of the research can be found in Appendix 7.1.

2.2.3 Damage Dependent Constitutive Model for Metal Matrix Composites

The thermoviscoplastic model developed in the previous sections was intended also for use
with short fiber metal matrix composites. Therefore, it was necessary to develop a composite
constitutive model which accounts for inelasticity in the matrix. This was accomplished by
applying the equivalent inclusion method in conjunction with the Mori-Tanaka method, as
described in detail in Appendix 7.3. The inclusion was assumed to be linear elastic, and the
matrix was assumed to be viscoplastic, according to Miller’s model [5].

In order to extend Benveniste’s [6] reinterpretation of the elastic version of the Mori-Tanaka
[7] method to viscoplasticity, we relate a history of the two phase self-consistent scheme. The
use of the self-consistent method to predict the "effective”, or overall composite stiffness of
elastic-plastic matrices reinforced with elastic inhomogeneities has evolved along two paths - the
"equivalent inclusion method” and the "direct approach.” For comprehensive reviews, see Mura
[8] and Hashin [9], respectively. As originally formulated by Eshelby [10] for dilute
concentrations of inhomogeneities, the equivalent inclusion method makes use of the following
"equivalency condition."

i m
Cijkl(e:l + ey + cfl) = Cw(eu + e:l + efl - e;l) @)

The reader should note that in the above equation and in the remainder of the paper superscripts
denote a qualitative description of the associated variables, whereas subscripts represent tensorial

components. Thus, in (2) Cijiu and C‘.}'.','d denote the elastic stiffness of the inhomogeneity
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and matrix, respectively, efl is the far-field strain, e, is the strain in the inhomogeneity, efl

is the matrix plastic stain, and ek‘l is the "equivalent transformation strain," or "eigenstrain."

Eshelby’s principal result was that uniform strain fields are produced in an ellipsoidal

inhomogeneity embedded in an infinite matrix under uniform strain el‘:l and uniform plastic

strain ‘fr The method was subsequently extended by Mori and Tanaka [7] by including a

"back stress" analysis which accounts for the mutual interaction between inhomogeneities.
Composite elastic and plastic hardening moduli were obtained from energy principles. The
Mori-Tanaka back stress analysis has, in turn, been extended by Taya and Chou [11] to include
two types of inhomogeneities.

As pointed out by Hill [12] in his self-consistent analysis of polycrystalline plasticity, the
matrix instantaneous stiffness rather than the elastic stiffness, should be used in the solution of
the "auxiliary problem” of a single grain embedded in an elastic-plastic matrix. Following this
recommendation, Tandon and Weng [13] corrected the Mori-Tanaka method by replacing the

elastic stiffness Cil’;'d in equation (2) with the instantaneous stiffness Lij'.',:l and removing the

plastic strain efl from the equation. The resulting equivalency condition in the incremental
form is

i o " m 0 - * 3)
Cijkl(dekl + dg, + de,) = I‘ijkl(dekl + dé, + de,, - deu)

where de, is the increment of the Mori-Tanaka "back strain." We note that the Mori-Tanaka

formulation for an elastic matrix is recovered if the instantaneous stiffness Lq"?d is replaced by

. . m
the elastic stiffness C,.ju .

Following Hill [14), we write the "direct approach” to the composite elastic stiffness Ciu
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_am ‘ i _~m )
Ciu = Cijkl te ((Cijmn Cijmn)AM”}

where ¢’ is the reinforcement volume fraction and the brackets denote the orientation average.
The composite elastic stiffness can be obtained following the determination of the orientation
dependent "strain concentration factor”, A, which gives the average inhomogeneity strain in
terms of the uniform composite strain. The determination of Ay, is the essential difficulty in
the micromechanics method. For dilute concentrations of inhomogeneities, the tensor

g;‘, T, can be obtained from Eshelby [10] as

_ m i _ m .41 (5)
Tou = Uyy + SVM(Cmnop) (Copkl Copkl)]

where S, is the Eshelby tensor, and I, is the identity tensor. For a non-dilute concentration
of inhomogeneities, the strain concentration tensor should be derived in a manner which takes
into account the particle interaction. Hill [15] obtained such a concentration tensor in his "direct
approach” to the self-consistent scheme for two-phase composites.

The Eshelby tensor is a function of the particle aspect ratios and the instantaneous matrix
stiffness. Mura [8] has given single integral equations for the Eshelby tensor corresponding to
the case of a transversely isotropic matrix with its crystalline directions coincident with the
principal directions of a spheroidal inhomogeneity of any aspect ratio. For the case of a
generally orthotropic matrix containing spherical mhomogenemes Morris [16] has given double
integrals for the Eshelby tensor.

In order to use Mura’s integrals for the Eshelby tensor, the inhomogeneities are assumed
to be aligned in the x, axis. This condition is not overly restrictive, as it allows for the
application of hydrostatic pressure and combined tension/torsion, and triaxial stress states in

which ¢, = &,,, 6,, » 0.

Recently, Benveniste [6] made the remarkable observation that the non-diiute strain
concentration tensor could be obtained from a reexamination of the elastic Mori-Tanaka method
in terms of equations (4) and (5). Benveniste et al. [6] subsequently extended the analysis to
predict the effective elastic stiffness of composites with two types of inhomogeneities. Recall
from equation (3) that the elastic-plastic form of the Mori-Tanaka method is obtained by
replacing the matrix elastic stiffness with the instantaneous stiffness. Therefore, the elastic-

plastic form of the Benveniste et al. [6] method can be written in terms of instantaneous stiffness Lij";‘d'
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Under an applied uniform strain rate ei‘} the composite instantaneous tangent stiffness Ly, is

I given as

r rp T 11 (6
l [E ¢k ymn muop] [; ¢ opkl]
l where  r = 1 denotes the first particle type,

r = 2 denotes the second particle type, and
r = m denotes the matrix phase.
. The average phase strain rates are given by
T _ L, r .0 _ 7
l & = Aijkl & r=12,.m )
l or
&M = 8
l 1 qul kl r=12 ®)
l where the matrix strain rate is written in terms of the applied strain rate éz")j as
m - r rya ,0 -
i & = (Do Tt r=12,.m )
l The dilute strain concentration tensors Tij'l;l are given in the form
l ro_ rym o, T gm _ (10)
' Tijkl = Uy + Sijmn(Lmno (Lopst Lopst)] ’ r=12
11

l ykl = Ly (11)
l where the fourth-order unit tensor is defined by
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w_-(as + 8,8,

Similarly, under an applied traction giving rise to a uniform stress rate
composite instantaneous compliance M, (=Li;l:l) is given as
- r r r r r 41 =
M, = [Er:c Mijmnwmo p] [Xr:c Wopkl] , r=12,.m

with

or

where the matrix stress rate is written in terms of the applied stress rate olf'j as

—[2«: ukl 6:,, r=12,..m

The dilute stress concentration tensors are

r r r m
M

Wty’kl = ijmn Tmnap opkl’ r=12,m

Substitution of equations (9) into (14) results in

m —
Wijld = L

For a given composite stress rate é;}

(12)

6% the
ij

(13)

(14)

15)

(16)

(17)

(18)

the composite total strain rate e;’j follows

from the composite compliance My, equation (13). The micromechanics leading to My, is
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based on the fact that the composite total strain rate is equal to the volume average of the phase
total strain rates. As pointed out by Hill [17] the elastic and inelastic components of the
composite total strain rate are not direct averages of their microscopic counterparts when the

o

composite stress rate, 8ip maintains inelastic flow in an elastically heterogeneous medium.

The composite inelastic strain is typically obtained from an elastic unloading. Because the
unified equations do not allow for regions of purely elastic deformation we will consider only
imaginary "instantaneous" elastic unloading. In other words, we assume that during the
infinitesimal period of unloading static recovery has insufficient time to induce inelastic flow.
With this assumption, we associate with each real state an imaginary elastic state of zero applied
stress. The composite inelastic strain rate is then given by

6% = My - Cp)'lop) (19)

However, the composite inelastic strain rate may be obtained without calculation the composite
compliance. Suquet [18] has given the composite inelastic strain as the volume average of the
product of the phase stress concentration factors and the phase inelastic strains. When inelastic
flow occurs only in the matrix the result is simply

m .ml (20)

The proof follows from the decomposition of strain and the equivalence of micro and macro
virtual power, also known as Hill’s Macrohomogeneity Equality.

The model accounts only for the particle volume fraction and not the individual
particle sizes. We make the implicit assumption that the individual particles "see" a statistically
homogeneous polycrystalline matrix. SiC whiskers of 1-2 um diameter, however, are embedded
within single grains. Walker and Jordan [19] have developed unified constitutive equations for
single crystals. The inversion of a single crystal equation to the total strain form may be of
limited utility, however, due to the presence of multiple corners on a single crystal SCISR.
Fortunately, continuous fibers of 150 um diameter may be at least one order of magnitude larger
than the surrounding grains [Kim et al. [20]. But the Mori-Tanaka method may have limited
applicability to typical continuous fiber reinforced metal matrix composites, which are often no
more than eight plies thick. In this case, the fiber diameter is of the same order of magnitude
as the composite thickness. The rigorous form of the micromechanics may not then reduce to
the simple common form (see, for instance, Mori and Tanaka [7].

The model presented herein provides the mechanical equation of state for the
composite and the growth law for the composite inelastic strain. The damage state is treated as
known. The Mori-Tanaka method has been used [Taya [21]] to obtain the strain energy release
rates for cracks in elastic composites. The concept of strain energy release rate is of limited
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utility for bodies beyond general yield. Also, proportional macro-loading may result in non-
proportional micro-loading. The J integral is therefore not useful for calculating microcrack
strain energy release rates.

Although the model has not yet been utilized to predict stress-strain behavior, it has
been utilized to predict initial yielding, as shown in Fig. 21. Further details about the model
can be found in Appendix 7.3.

2.2.4 Effective Elastic Properties of Randomly Oriented Fiber Composites Due to Forming

One of the proposed tasks in the research program was to develop constitutive
equations for metal matrix composites which could be used in the laser heating experiment.
Although our ultimate intent was to produce a thermoviscoplastic constitutive model, we
discovered that the initial elastic properties of chopped fiber composites were affected by the
forming process. Therefore, we developed a model for predicting the initial elastic properties
of the composite. The procedure utilizes the equivalent inclusion method, as described in detail
in Appendix 7.2.

To see how this is accomplished, consider a single representative volume element of
a composite material reinforced by continuous or discontinuous fibers, as illustrated in Figs. 22-a
and 22-b, respectively.

It is clear that the above volume elements are transversely isotropic, thus five independent
elastic moduli should be determined theoretically or experimentally for both cases. Since it is
very cumbersome to solve an exact boundary value problem associated with the double cylinder
model shown in Fig. 22, the authors utilize the equivalent inclusion method proposed by Taya,
etal. [11,22]. For a continuous fiber composite, a number of theoretical solution schemes have
been investigated for determining the five independent elastic moduli of the transversely isotropic
volume element [23-26]. When the fiber length is very large compared to the fiber diameter,
these solution schemes may be applied to a composite even with discontinuous fibers.
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FIBER MATRIX

Fig. 22 Representative Volume Elements
() Continuous Fiber Element

(b) Discontinuous Fiber Element
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For convenience, the composite elastic moduli of the volume element are assumed to be
known. In matrix form, they can be written as

[o4] .Cu Cn Cn 0 0 0 |f,

lon| € Cph €y O 0 0

°33> ) Cpp Gy Cp 0 0 0 | 21
ol 10 0 0 (€y-C) 0 0 [k,

o] 10 0 0 0 2¢c, 0 [k,

Moul 0 0 0 0 0 2C4e,)

If a composite is initially isotropic, the reinforcing fibers do not have a preferred
orientation. The probability density distribution for fiber orientation may be represented by a
sphere in the three dimensional case. In the case where the fibers are distributed randomly in
a single plane, the sphere degenerates to a circle. The degree of randomness of the volume
element can be mathematically formulated for an initially isotropic short fiber composite after
certain types of permanent deformation, such as hot pressing, extrusion, or rolling. When the
composite is subjected to hot pressing or extrusion, the material becomes transversely isotropic.
For example, a cube becomes a square plate or a cylinder becomes a circular disc, and vice
versa. For an arbitrary thickness change and diameter change due to hot pressing and extrusion,
respectively, an initially isotropic composite becomes transversely isotropic as illustrated in Fig.
23a and 23b. Alternatively, a forming process such as rolling causes orthotropic reorientation
of fibers, in which one of the dimensional changes is negligibly small, as shown in Fig. 23c.

The present approach requires three assumptions:

1. Although the fibers after each of the material forming processes mentioned above may
not be evenly distributed within the subdomain illustrated in Fig. 24, the fiber
distribution density is assumed to be spatially homogeneous for mathematical
simplicity.

2. The material forming processes mentioned herein are possible only through the plastic
deformation of the matrix material. Plastic strain may not be spatially homogeneous
in the matrix material due to stress concentrations near the reinforcing fibers. Also,
it is well known that even an isotropic homogeneous material becomes transversely
isotropic or orthotropic after the subject forming processes. This plasticity effect is
neglected in the present study.

3. The material forming processes mentioned above may cause defects, such as broken

fibers, fiber matrix debonding, etc. Furthermore, microvoids cannot be completely
removed from the composite. The present study assumes a defect-free composite.
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Fig. 23b Fiber Reorientation Due to Extrusion
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FIBER

Fig. 24 Description of Fiber Orientation
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The composite stiffnesses after reorientation of each volume element due to hot pressing
depend on the ratio of virgin material thickness to formed thickness. From Fig. 23-a,
. ta
sunlj = — = E (22)
7

Thus, the stiffness components after hot pressing are given by

X w2+ ¢

- 1 ;. (23)

C. = C 0 d8 d
vd 21tsin‘|"£ ”nji v " - ¢

where

/ (24)
Ciu=a,a,a,a C,.

As shown in Fig. 24, the direction cosines, a; , can be defined as

sinBcos¢ -cosBcosdp sing

a; ~ |sinBcosd -cosBsing -cosd (25)

cosO sinf 0

Substituting (24) and (25) into (23) gives the five independent elastic constants after hot pressiiig
in terms of the thickness ratio and the elastic constants of a perfectly aligned fiber composite.
These are described in Appendix 7.2.

As mentioned earlier, the five independent elastic constants for a perfectly aligned fiber
composite must be known prior to the forming process. The shape of reinforcing short fibers
or whiskers has been frequently assumed by a number of researchers [11,22] to be a prolate
spheroid. This approach is known as the equivalent inclusion method from which all elastic
constants of a composite reinforced by aligned inclusions can be estimated either analytically or
numerically.

From the present study, the effective elastic constants for aligned continuous or
discontinuous fiber composites can be predicted. The effective transverse Young’s modulus is
compared with the experimental data in Fig. 25.

In Fig. 26 the effective elastic constants for a composite with aligned discontinuous fibers
are illustrated for glass fibers in polystyrene. The elastic constants are then utilized as input data
for determining the effective Young’s modulus of the same composite with randomly
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oriented fibers in a two dimensional domain. Fig. 27 shows the comparison between the present
study and the experimental result of Lee [27].

The variations of the effective Young’s modulus in the major axis are illustrated in Fig.
28 for an ideal short fiber composite subjected to each of the three material forming processes
discussed earlier. Consider an extreme case in which the thickness ratio is zero. In such a case
the fibers after hot pressing or rolling become planar. The material properties after hot pressing
become transversely isotropic, while those after rolling remain orthotropic. When the material
is subjected to an extrusion in which the diameter ratio approaches zero, the material properties
for a perfectly aligned fiber composite are retrieved, as shown in Fig. 28.

From the present study, an engineering tool is proposed for theoretical evaluation of the
elastic properties for a composite with perfectly aligned short fibers.

2.3 Experimental Program

The experimental research was performed in two distinct areas: constitutive testing; and
plate response to external heating. The constitutive experiments involved uniaxial testing of
coupons at elevated temperature. The results of these tests were utilized to characterize the
material constants for current uniaxial thermoviscoplastic constitutive models.

The second experimental area, the testing of plates under external heating was necessary
to verify the theoretical models developed herein. These two experimental efforts are discussed
in greater detail in the following two subsections.

2.3.1 Constitutive Testing

As a part of the research program it was necessary to produce a thermoviscoplastic
constitutive model applicable to Hastelloy X, the material used in the plate experiments. Toward
this end, the constitutive theories chosen for this investigation were those of Bodner [3] and
Walker [4]. Selection was based upon several considerations, namely: 1) these models have
been scrutinized very carefully in the literature and are now considered to be in a mature form:
2) these models have been previously used to model the behavior of Hastelloy X; 3) parameter
evaluation schemes are more readily available for obtaining "initial" estimates to the material
constants; and 4) continued development of these models requires a thorough understanding of
their full potential, as well as their limitations. These models are reviewed in detail in Appendix
7.4,

The construction of these models required that a series of complex experiments be
performed for temperatures of 1100 and 1700°F using four different mechanical testing modes.
These include monotonic tension, fully reversed cyclic, stress drop, and complex history
experiments.
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All of the tests performed during this program were carried out in the Solid Mechanics
Laboratory of the Aerospace Engineering Department at Texas A&M University using an MTS
880 servo-hydraulic closed-loop testing machine. The load frame was configured with a closed-
loop heating chamber, water-cooled hydraulic grips, and externally mounted load cell, and axial
extensometer, and a mini-computer for controlling testing operations. The heating chamber had
a maximum operating range of 1800°F and was of the three zone, resistive heating, clam shell
type design. Temperature feedback for each longitudinal set of heating coils was provided by
24/28 gauge K-type bead welded thermocouple wire. The temperature at the center of each zone
was monitored by its own process and power controller and enabled the user to establish and
maintain a spatially uniform temperature profile (within ASTM specifications for a short term
test) along the gauge length of the specimen. A set of Fiberfrax insulating plugs placed on the
top and bottom access ports of the furnace and grips which extended into the hot zone were used
to reduce and/or minimize the effect of convective and conductive heat losses, respectively.

A high temperature specimen grip system was utilized for this series of experiments and,
as stated above, extended into the main body of the furnace. The grips were designed to accept
threaded specimens through the use of an inside/outside threaded adapter. Backlash in the
specimen/adapter assembly was removed via a hydraulically operated piston which could be
loaded to a specified amount. Grip alignment was performed prior to and during testing (failure
of one of the specimen adapters necessitated a realignment during the course of the experimental
program). This included a check of both concentricity and angularity of the load train with
respect to the actuator rod movement. The alignment procedure yielded a total indicated run-out
of 0.0008" at an angle of 0.22°, as measured by a digital dial indicator accurate to 0.00005".
However, since the adapter assembly contained a number of threaded components, it was not
reasonable to expect any degree of repeatability of these measured quantities, however; they are
stated for the sake of completeness. It should also be noted that there was no explicit
measurement of specimen bending strains to ensure compliance with ASTM specifications.

The primary measured data of interest included load, displacement, and temperature.
The load data were obtained via a 10 KIP load cell mounted in the load train. Displacement
data were measured using a one inch gauge length, air cooled, axial extensomenter. The
extensometer was mounted outside the furnace and used a set of conical tipped quartz extender
rods to make contact with the specimen. Signal conditioning for both of these transducers was
part of the MTS 880 load frame system and possessed a multiple range select feature which
provided maximum data resolution. Load and displacement data were measured using a 12 bit
A/D system which had a +5 mV resolution and was an integral part of the controlling and
measuring computer system. Temperature data were obtained using three 24/28 gauge K type
thermocouples equally spaced along the gauge length of the specimen. The thermocouples were
connected to a multi-channel digital thermometer which was not an intergral part of the A/D
measuring system. Therefore, temperature data were not automatically recorded on a regular
basis, as were the load and displacement measurements. Instead, temperature values at the
beginning of a test were entered by hand into the data acquisition program and simply monitored
thereafter. The thermocouples were attached to the specimen using the self-supporting method.
This method of attachment provided sufficient thermal contact with the material to yield
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accurate temperature measurements and did not flaw the specimen (which in general can result
in premature failure), as is common with welding thermocouples to the surface.

The Hastelloy X material used to fabricate the specimens was purchased in bar stock
form from Atek Metals Center of Houston, Texas. This was a solution strengthened material
conforming to ASM specification number 5754H. The design of the specimen was that of a
standard, constant gauge section, low cycle fatigue geometry having a nominal one inch gauge
length and quarter inch diameter circular cross-section. The specimens were fabricated to meet
ASTM E606-77T specifications except for the surface finish and post machining heat treatment.
A 32u finish was used instead of the typical 8u for cost considerations. In addition, the
specimens were used in an "as received” condition with no additional heat treatment to remove
microstructural damage resulting from the machining process.

A total of 27 tests were conducted in fulfillment of this isothermal constitutive test
program. Two cyclic tests were carried out at 1200 and 1600°F, respectively, and served as a
basis of comparison to previously obtained data and for uniaxial constitutive code verification.
Specific details of the remaining 25 experiments are as follows. Monotonic tension and fully
reversed cyclic tests were performed at 1100 and 1700°F, using a variety of strain rates, ranging
from 1x10° to 3x10? sec, under strain controlled conditions. Strain amplitudes for the tension
and cyclic test were 4.0% and 0.8 %, respectively. However, the strain amplitude of 0.8% was
subsequently reduced to 0.4% during the course of 1100°F experiments because specimen
buckling became a problem. This was apparently the result of a material instability at the
selected temperature and strain rate.

The fully reversed cyclic experiments were carried out until a saturated condition was
achieved. For the purpose of this test program, cyclic saturation was defined as a change in
stress amplitude of less than 100 psi from one cycle to the next. The stress drop tests, used to
measure values of back stress, were performed by inserting a hold time on the unloading branch
of a fully reversed saturated hysteresis loop, and monitoring the creep response. When positive
creep was observed, the hold stress was greater than the back stress and vice versa, when
negative creep was seen. Since it is very difficult to obtain the exact hold stress which results
in no creep, the general procedure was to bracket the positive and negative creep responses and
use a linear regression scheme to estimate the values of the back stress. Additional stress drops
were made on a specimen after it had been recycled to saturated condition.

Finally, two experiments, one each at 1100°F and 1700°F, were performed in order to
verify the predictive capabilities of the constitutive models considered herein. These complex
history tests included mechanical effects such as strain rate jumps, relaxation, cyclic behavior,
and strain holds. A complete summary of the entire test matrix can be found in Table 1. The
material parameters resulting from these experiments are listed in Tables 2 and 3.

Figures 29 and 30 demonstrate the predictive capabilities of the models compared to

complex history tests performed on Hastelloy X at 1700°F. Experimental results were compared
to Bodner’s model at 1700°F, as shown in Fig. 29. This figure shows that Bodner’s model
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Table 1. Test Matrix.

l [
Strain Strain Type of
Test Specimen | Temp. Rate_ Amp. T-st
(F) (sec™™) (%) (
A 4 1100 | 1.1921E-05 2.5 ' Monotoniz |
i ! Tencion '
5 5 1100 1.1921E-05 0.8 Cveclic
6 6 1700 1.1921E-05 0.8 Cyclic
7 7 1700 1.2207E-04 0.8 Cyclic
8 8 1700 1.1903E-03 0.8 Cyclic
9 9 1700 5.0362E-04 0.8 Stress
Hold
10 = 10 0.6 Monotonic
Tension
11 11 1700 1.1903E-03 4.0 Monotonic
Tension
12 12 1700 3.B148E-03 0.8 Cyclic
13 13 1100 3.8148E-03 0.8 Cyclic
14 14 1100 1.2207E-04 0.8 Cyclic
15 = 15 1100 1.1903E-03 0.8 Cyclic
16 16 1100 1.1903E-03 4.0 Monotonic
Tension
17 17
18 * 18 1100 1.1903E-03 0.8 Cyclic
10 19
20 20
21 21 1100 5.3047E-05 0.8 Stress
Hold
22 * 22 * 1100 5.0362E-04 0.8 Cyclic
23 23 1100 5.0355E-04 0.6 Stress
Hold
24 24 1100 1.1902E-03 0.4 Stress
Hold
25 25
26 26
27 @ 27 1100 0.6 Complex
History
28 @ 28 1700 0.6 Complex
History
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Table 2. Material Parameters for Bodner'’s

Model at 1100°F and 1700°F.

]

Parameter 1100°F 1700°F |

|
Ay, sec”! 0.6500E-04 0.8500E-0&

Ay, sec”l 0.6500E-04 0.5500E-04 ;
Dy, sec”l 0.1000E+05 0.1000E+05
E, opsi 0.2394E-08 0.1900D+08
ry 0.9800E-00 0.9800E-00
rp 0.9800E-00 0.9800E-00
my, psi-l 0.5500E-03 0.5500E-03
my, psi-l 0.1100E-01 0.1100E-02
m3, psi-l 0.3477E-04 0.3477E-03
n 0.1000E+01 0.7000E-00
Zy, psi 0.1000E+06 0.2500E+06
Zy, psi 0.2900E+06 0.2200E+06
Z,, psi 0.1000E+06 0.2500E+06
Z3, psi 0.1300E+06 0.8200E+05
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Table 3. Material Parameters for Walker's
Model at 1100°F and 1700°F.

E—

Parameter 1100°F 1700°F
L1, psi 0.8580E+03 0.1080E+06
Dy, psi 0.0000E-00 0.0000E-00 ;
E, psi 0.2394E+08 0.1900E+08
ny, psi 0.0000E-00 0.0000E-00
ns, psi 0.4200E407 0.2500E+0¢
n3 0.0000E-00 0.0000E-00
ny 0.0000E-00 0.0000E-00
ns 0.0000E- 00 0.0000E-00
ng, psi(l ™secl 0.0000E-00 0.0000E-00
ny, sec 0.0000E-00 0.0000E-00
n 0.1420E+02 0.5000E+01
m 0.1160E+01 0.1160E+01
By, psi -0.2000E+04 -0.1000E+04
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predicts an extremely “"oversquare" response. This response is not in keeping with the
observations made previously in this study, where Bodner’s theory accurately represented the
general shape of the stress-strain curve. Also, this model demonstrates insensivity to relaxation
and strain rate jumps. This response is contrary to information given by Bodner, where it is
stated that use of the plastic strain rate as the measure of hardening enables the model to better
predict strain rate jump behavior. This inconsistency is possibly due to the fact that the
hardening terms in the evolution equations saturate too quickly.

Figure 30 presents a comparison of Walker’s theory to measured values at 1700°F.
Walker’s model predicts the overall response accurately, including general shape, strain jumps,
and relaxation. This outcome is congruent with previous results.

Further results for this phase of the research can be found in Appendix 7.4.
2.3.2 Plate Testing

An experimental program was developed to investigate the transient response of a
viscoplastic plate subjected to rapid heat input. Of particular interest was the measurement of
the displacement and temperature fields for a rectangular plate specimen undergoing rapid laser
heating. The experimental program was performed at the Air Force Wright Aeronautics
Laboratories using the LHMEL I (Laser-Hardened Materials Evaluation Laboratory) facility.

A specimen support fixture was designed to impose clamp-like boundary conditions along
each edge of a rectangular plate specimen. The super-structure of the fixture was fabricated
from 6061-T6 aluminum to support the specimen in the vertical position, as shown in Figs. 31a
and 31b. An insert made of 304 stainless steel served both as a support stiffener and water
jacket. The total water cooling system provided a uniform and constant plate boundary
temperature using tap water. Thermocouples were attached to each half of the insert at the mid-
position, approximately 0.5 in away from the specimen, to record any temperature variations.

Hastelloy X material was obtained in plate form from ATEK Metals Center, Inc.,
Cincinnati, Ohio. Three 27 x 40 in plates with designated heat numbers 2600-7-4649, 040161,
and 260-7-4630, corresponding to nominal plate thicknesses of 1/16 in, 1/8 in, and 1/4 in,
respectively, were used to fabricate a total of 18 specimens (6 of each thickness). The material
was received in an annealed condition specified by ASTM 5536 and used without further heat
treatment. No micrographic studies were performed to investigate the variations in grain
structure or size that existed between the different heats.

An integrated instrumentation package was used to simultaneously measure the
displacement and temperature fields in a plate specimen undergoing laser irradiation. The
primary instrumentation included: 1) LVDT’s (Linear Variable Differential Transformers) for
measuring displacement; 2) thermocouples for measuring temperature; 3) a radiant pyrometer
for measuring surface brightness temperature; and 4) strain gages for measuring the plate
vibration frequency. A 12 bit, high speed data system (called the PCM) was used to convert
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the analog output of these transducers and thermocouples to an equivalent binary form at an

approximate rate of 1.2 KHz. Once converted, the data were stored on magnetic tape for
subsequent conversion to engineering units and any other post-processing. Described below is
a more detailed discussion on the implementation of the various pieces of instrumentation.

A total of 11 Schaevitz DC-operated LVDT’s (model number GCD-121) were used to
sense the out-of-plane displacements resulting from the laser deposition. The outputs of the
LVDT’s were scaled via the data system, to detect displacements as small as 0.0001 in, at a
published maximum frequency response of 15 Hz. The LVDT’s were arranged in a symmetric
pattern around the heat zone (see Fig. 32) and were rigidly mounted to a support system which
was positioned directly behind the specimen, as shown in Fig.’s 33a and 33b. In addition, 2
LVDT’s were used to monitor relative movement between the LVDT support system and plate
fixture.

Measr~=ment of the in-plane temperature field, through-thickness temperature gradients,
and non-contact plate surface temperatures, were made using 21 K-type 30 gage thermocouples.
As shown in Fig.’s 34 and 35, the thermocouples were concentrated in a 1 in diameter circle
around the heat zone and were arranged in a symmetric pattern for measuring the in-plane
temperature field. The through-thickness temperature gradients were measured using
thermocouples positioned at the same coordinate locations, but mounted on the front and back
of the specimen. All thermocouples were intrinsically mounted to the specimen via a welding
operation with the exception of 4 thermocouples. All thermocouples mounted on the front
surface of the plate (the heat side) were Inconel 600 heated to withstand the extreme
temperatures, whereas the thermocouples mounted on the back side of the specimen were
insulated using high temperature glass braid. The thermocouples were connected to the data
system via a 150°F reference oven, which for this test was left open to room temperature. For
thermocouple input the data system was scaled to record voltage changes on the order of 0.03
mV, which corr~sp- ads to a measured temperature resolution of approximately 1.4°F. Thus,
taking into account the NBS wire error specification and the above resolution, a maximum
temperature uncertainty between 5.36°F and 18.5°F can be expected.

A Thermogage Corporation germanium radiation pyrometer (model number 8000-1) was
used to obtain relative measuremente of the plate surface brightness temperature. The pyrometer
is a high speed transducer, having a peak spectral response at a wavelength of 1.5 um and an
effective temperature range between 900°F and 5400°F within a target area of approximately
0.0491 in?. The pyrometer was aligned to record temperatures within the laser irradiated spot
diameter in conjunction with a thermocouple. The output of the pyrometer was fed into the data
system for use later in developing an appropriate transfer function for the slower responding
thermocouples.

A Micro-Measurements CEA-13-12SUN-350, 350 Q strain gage was used to measure the
dynamic response of the specimen resulting from the rapid heating. The strain gage was parallel
with the edge of the plate specimen approximately 2.5 in off center. Since vibration frequencies
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Fig. 33 LVDT Support Stand Positioned Behind the Specimen
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and not strain magnitudes were of interest, the output of the strain gage was displayed on a
Visicorder strip chart recorder.

The experiments were performed at the Air Force Wright Aeronautics Laboratory in the
LHMEL I facility, which is managed and operated by ACUREX Corporation. A schematic of
the facility and pertinent equipment is shown in Fig. 36. ACUREX personnel were responsible
for the overall test procedures which included: 1) safety considerations; 2) calibration of the
laser and other support equipment provided by ACUREX; 3) the laser operating characteristics;
4) the laser fire sequence; and 5) sufficient photographic documentation to reproduce the test
setup.

The plate specimens were irradiated using a high energy electric discharge 15 KW
continuous-wave carbon dioxide laser operating at a wavelength of 10.6 um with a flat-top beam
profile. The exact beam profile, which includes both width and density, was determined by
ablation of square plexiglass specimens, as shown in Fig. 37. By measuring the plexiglass burn
patterns, both the laser target area and beam uniformity in the radial direction can be found (see
Fig.’s 38a and 38b for a typical example). For this experiment, the laser contact spot was found
to be ellipsoidal, having major and minor axis lengths equal to 0.5235 in and 0.5276 in,
respectively (this is a result of the beam striking the specimen at a 10° incidence angle in order
to prevent energy feed back through the laser z-pattern).

The test apparatus was positioned in the laser facility test cell, as shown in Fig. 39.
Additional items used during the experiments, but not previously discussed are: 1) a nitrogen
flood box which was used to prevent oxidation of the specimen surface while it was being
heated; and 2) video and high speed (500 frames/sec) cameras for documentation of the plate
response during laser deposition. :

A total of 4 laser/structure interaction experiments were conducted. All 4 tests utilized
the same 1/16 in thick plate specimen (number HX PO116G) with input heat flux and exposer
time serving as test variables. The primary objectives of the first three tests were to measure
the displacement and temperature fields. Therefore, laser power levels and exposer times, as
shown in Table 4, were adjusted to bring the specimen temperature to just below the melting
point. Figures 40 and 41 show typical output of the LVDT’s and thermocouples during laser
irradiation.

The last experiment run on the specimen was a burn through test. The objective of this
test was to find an upper bound on the laser power settings and exposure time for this material.
Only temperature data was taken in order to preclude damaging any of the LVDT’s when burn
through occurred. The results of this experiment are best shown in Fig. 42.

In summary, a list of the major problems encountered during the tests is as follows: 1)
energizing and/or firing the laser adversely affected the measured data, both with noise and
voltage shifts; 2) there was no explicit indication of when the laser power was on and off the
target area; 3) the nitrogen flood box did not provide an inert environment and made
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Plexiglass Specimens Used to Check the Laser Beam

a) Before Ablation
Width and Density

b) After Ablation

Fig. 37
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Fig.

39 Test Apparatus Posit
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photographic documentation difficult; 4) the thermocouple reference junction needed to be below
room temperature; 5) a constant aperture setting on the video and high speed cameras made
photographic interpretation difficult at the specimen heated up; 6) the pyrometer data was
inappropriately scaled; and 7) there was apparent movement of the LVDT support stand during
laser deposition.

It appears that the PCM malfunctioned during the experiments. It is believed that
significant background noise at 60 Hz was picked up by the apparutus, thus invalidating the
experimental results. Due to logistical problems, it was not possible to perform further
experiments to study this problem.

Table 4. Laser Parameters for the Specified Tests

Test Shot Incident Beam Heat Shot
Number Energy (KW- Area (cm?) Flux(KW/cm?) Duraiicn
sec)
1 49540 1.4 1.4 1 5.0
2 49541 2.8 1.4 2 3.0
3 45546 4.2 1.4 3 1.0
4 49550 7.0 1.4 5 1.2-1.6

Further details about the experimental program on plates can be found in refernce 2 and
Appendix 7.7.

2.4 Conclusions

We have synopsized herein the results obtained during the course of AFOSR contract no.
F49620-86-K-0016. Below are a few of the major conclusions formed as a result of this
research effort:

1) analytic results suggest that high energy laser heating can induce dynamic response in
plate-like structural components;

2) where heating is of sufficient intensity, it is possible to induce significant viscoplastic
deformations in plates, and this inelastic response produces significantly different behavior
from elastic results;

3) laser heating of thin plates can produce significant geometric nonlinearity;
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4) two-way thermomechanical coupling in laser heated plates does not appear to be
significant because the inelastic strains do not oscillate substantially;

5) elastic properties in plates composed of short fiber metal matrix composites appear to
be strongly affected by the forming process - a model has been proposed herein to account
for this effect;

6) the thermoviscoplastic constitution of short fiber metal matrix composites is highly
complicated - a thermoviscoplastic model has been proposed herein which utilizes the
equivalent inclusion method;

7) in order to model the thermoviscoplastic deformations that occur in a laser heated
metallic plate, it is necessary to develop sophisticated constitutive equations; these equations
require that a series of complicated experiments be performed - this has been done herein
for two candidate models; and

8) laser heating experiments on plates are extremely complex - although some initial
experiments were performed as a part of this research, more experiments are needed before
concise statements can be made about the accuracy of the models developed under this
contract.
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RESEARCH ASSIGNMENTS

4.1 Faculty Assignments

1.

Dr. D.H. Allen (Co-principal Investigator) - overall project coordination; development of
coupled field equations; development of transient temperature constitutive equations;
experimental programs; one-way coupled finite element models.

Dr. M.S. Pilant (Co-principal Investigator) - development of coupled field equations; two-
way coupled finite element models.

Mr. P.K. Imbrie (Lecturer and Ph.D. Candidate) - coordinator for experimental programs;
transient temperature constitutive models.

4.2 Additional Staff

1.

2.

Mrs. C. Terry (Secretary) - secretarial support.

Mr. H.T. Chang (Ph.D. Research Assistant) - one-way coupled finite element model
(completed degree June, 1988).

Capt. S.K. Bryan (Ph.D. Candidate) - development of coupled field equations (completed
degree June, 1988).

Ms. L.D. McCrea (M.S. Research Assistant) - experimental constitutive equations
(completed degree June, 1990).

Mr. G. Geong (Ph.D. Candidate) - two-way coupled finite element model.
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INTERACTIONS

5.1 Presentations (since second annual report)

1.

Allen, D.H., "Modelling Nonlinear Response of Metallic Media at Elevated Temperatures, "
NASA Langley Research Center, April, 1988.

Allen, D.H., "Analysis of Viscoplastic Plates Subjected to Laser Heating," Lawrence
Livermore National Labs, February, 1989.

Allen, D.H., "Damage Mechanics in Laminated Composites,” Florida State University,
June, 1989,

Allen, D.H., "Mechanics of Damage in Metal Matrix Composites," University of Virginia,
February, 1990.

Allen, D.H., "Thermal Effects in Inelastic Solids," M.I.T., February, 1990.

Allen, D.H., "A Review of the Theory of Thermomechanical Coupling in Inelastic Solids, "
University of Virginia, February 1990.

Allen, D.H., "Analysis and Experiment of Rapidly Heated Viscoplastic Plates," Sixth
Forum on Large Space Structures, Atlanta, 1988.

Allen, D.H., Imbrie, P.K. Chang, H.T., and Jeong, G.S., "Analysis and Experiment of
Rapidly Heated Viscoplastic Plates,” ASME Winter Annual Meeting, Chicago, 1988.

Allen, D.H. and Lee, J.W., "The Effective Thermoelastic Properties of
Whisker-Reinforced Composites as Functions of Material Forming Parameters,” ASME
Winter Annual of Material Forming Parameters” ASME Winter Annual Meeting, San
Francisco, 1989.

5.2 Awards and Achievements

1.

Dr. Allen has been named Director of the newly created Center for Mechanics of
Composites at Texas A&M University.

Dr. Allen received the Texas A&M University Association of Former Students Award for
Distinguished Research Achievement in 1989.

Dr. Allen received the Halliburton Award for Distinguished Research in 1988.

Dr. Allen was promoted to full professor in 1988.
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S. Dr. Pilant was tenured and promoted to associate professor in 1989.

5.3 Other

1. Dr. Allen served as Associate Editor of the Journal of Spacecraft and Rockets from 1984
to 1990.

2. Dr. Allen taught three shortcourses on thermoviscoplasticity through the AIAA Professional
Educational Program in 1988, 1989, and 1990.
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GRADUATE STUDENT ACTIVITIES
6.1 Theses Completed

1. H.T. Chang, "Analysis of Viscoplastic Plates Subjected to Rapid Heat Inputs," Ph.D.,
1988.

2. L.D. McCrea, "Application of Current Unified Viscoplastic Constitutive Models to
Hastelloy X at Elevated Temperatures,” M.S., 1990.

3. G.Jeong, "Modelling of Two-Way Coupling in Rapidly Heated Thermoviscoplastic Plates, "
Ph.D., 1990 (to appear in December).

4. P.K. Imbrie, "Experimental Testing of Viscoplastic Metals During Thermal Transients,"
Ph.D., 1990 (to appear in December).

6.2 Thesis Abstrac
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ABSTRACT

A Finite Element Model for Predicting Nonlinear Thermomechanical
Response of Plate Structures 1o Fapid External Heating. (August 1988)
Huang-Tsang Chang, B.S:, National Taiwan University;

M.S., Oklahoma State University

Chairman of Advisory Committee: David H. Allen

The objective of this dissertation is to develop a solution algorithm capable of
predicting transient thermal/structural response of viscoplastic metallic thin plates
exposed to hostile thermal loads. In the second chapter of this dissertation, the
author will describe the general background of the problem being considered in this
research. By assuming one-way coupled thermal/structural response, a2 solution
approach is then outlined in the following chapter. In chapter four, a finite element
formulation is utilized to consiruct the solution algorithm. The developed code is
verified with several simple cases in chapter five. In chapter six example problems
are given 10 demonstrate the full capabilities of ihe model. I naliy, suggestions o
improve the current model are given and conclusions are drawn from this research

in chapter seven.
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ABSTRACT

APPLICATION OF CURRENT UNIFIED VISCOPLASTIC
CONSTITUTIVE MODELS TO RASTELLOY X AT
ELEVATED TEMPERATURES. (August 1990)

Lisa Diane McCrea, B.S., Texas A&M University;
M.S., Texas A& University

Chair of Advisory Committee: Dr. David H. Allen

The unified viscoplastic constitutive theories of Bodner-Partom and
Walker were investigated to determine their predictive capabilities using
experimentally obtained data on Hastelloy X, at 1100 and 1700°F, as the
basis of comparison. Material parameters for theses models were obtained
using an iterative style approach, which does not require the constants to
be explicitly evaluated, as is traditionally done. Instead, the nonlinear
form of the constitutive equations are numerically integrated using physi-
cal incite, as well as knowledge of the parameters, until acceptable val-
ues are obtained.

Comparisons to experimental data revealed that the constitutive
theories are not able to simultaneously model the initial and fully satu-
rated condition of a material which nhas undergone a considerabie amount of
cvclic hardening. In addition, a power law based strain rate equation s
shown to model this material system best overall.

The iterative method for determining the material constants is shown
to be a viable alternative, proving to be much simpler and less time con-

suming than previously developed procedures.
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ABSTRACT

In this paper the governing equations of motion are constructed for a three dimensional
domain which is composed of a thermoviscoplastic material subjected to both thermal and
mechanical loading. The resulting thermodynamic and mechanical field equations are two-way
coupled in the sense that the deformations are temperature dependent and vice versa. The field
equations are cast into a well-posed boundary value problem, and a weak variational form is
constructed. This form is then discretized using the finite element method.

Example problems are solved for a circular plate subjected to rapid external heating
simulating a laser input. It is found that inertial effects cannot be neglected, since the plate
undergoes vibrational response. However, the two-way coupling appears to be a second order
effect.




Formulation of 3-D, axi-symmetric equations of motion

0. Introduction

In this report, we derive the governing equations for a three dimensional plate, either freely
supported or clamped (with no external loads), subjected to boundary heating by a laser
focused on the center of the plate. No geometric nonlinearities are included, but two-way
coupling between thermal and mechanical forces are allowed, as is the generation of heat
by inelastic deformations.

In the first section, we derive the governing equations. In the second section, we derive
the weak formulation of the system of partial differential equations. In the third section, we
derive the Galerkin finite elerent method (FEM) for this problem. In section 4, we define
various coefficients and forces for the problem.

1. Governing equations

We consider a radially symmetric three dimensional plate. We examine two different
boundary conditions — freely supported with no external loads and clampled, with no
external loads. The momentum equations are

0%u s, 1 0
b~ gpom T 7om = Joset gon] =0, (1)
O*w 0 1 0
— —— - - = 9
P o2 [67‘0” + mds + 620"] 0, (12)

With thermo-elastic and inelastic coupling therms, the thermal equations are [1]

Pcv%_{ — kV?T + a6 T = 0iiéf;, (1.3)

and the constitutive relations are given by the simplified Bodner-Partom constitutive

model [2]

\/_Dol |ezp 3n ]' lzn (1.4)
—Z\r
02 —rn(Z1 —02)0',16 AlZl(——E—) s
1
where 6{1 are the components of the inelastic strain, and a3 is the drag stress. We have

defined 4,, = %(Z 0:i)6i; and lo;] = /2 (0i; — 5i5)*.
The dependent variables are u — the radial displacement, w — the vertical displace-

ment, T — the temperature, and €/., a; — the internal state variables.

l]’

1




The stress-strain relations are given by

orr = (A + 2p)err + Megs + €:)

096 = (A +2p)egg + Merr + €22)
02z = (A +2p)€:: + Merr + €60)
Orz = 2p€r,
and the strains are related to the dependent variables by

au I
€rr = 5 T Epr o(T —Tr)

1
€60 = —~U = 659 — a(T — Tr)
6w I
€ = 5 — €, ao(T — Tr)
1 0u Ow

—_— e ——— — I — —_—
€rz = 2(62 + or ) €rz a(T TR)

We have assumed a thermal stress tensor a which is isotropic.

The above equations are the fully coupled, axi-symmetric equations describing the
thermo-mechanically induced motion of a circular plate subject to boundary heating at
the center of the plate.

In the next section, we derive the weak formulation of equations (1.1)-(1.4).




2. Weak formulation

Multiplying equation (1.1) by a test function ¢ and integrating by parts, we obtain

// ¢purdrdz+// 6¢ 6 7‘0‘,-; +¢0’oo]d7‘dz = /q&rar.n ds=0 (2.1)

Substituting for ¢ in the above equation, we have

g;// ¢purdrdz+/ a¢r(z\+2ﬂ)—d dz+/ 6¢r/\( +—)drdz (2.2)

// ¢, (a“ a‘:)drdz+//[¢(A+2u)§+¢A%§+¢Ag~f]d"dz=

]/ 5;7‘[2/1#, + (38X +2p)a(T — Tg))drdz + // ¢[2ue£9 + (3A + 2p)o(T — Tr)]drdz+

// r[2uel, + 2ua(T — Tg))drdz

where we have used the fact that ¢, = 0 and consequently €/, = 0, since we are starting
from the elastic regime. Note that the right hand side of (2.2) is driven by two competing

effects — the temperature difference T — Tg and the inelastic terms e, 5

From equation (1.2) we obtain

// ¢pwrdrdz+// 6¢rar, o¢ razz]drdz —/d)rcr,,n ds =0 (2.3)

Substituting for o in the above equation, we have

3 / / gpurdrdz + / Z¢ u((9 Zw)drdz (2.4)
"'/ gé"(l\*'?lu) ddz+// r,\(—+ )drdz_

// —r2pule el +a(T- Tr)]drdz + // 2;16,, + (3X\ + 2p)a(T — Tg)]drdz

Again, note that the right hand side of (2.4) is driven by two competing effects — the

temperature difference T — T and the inelastic terms e,IJ

Integrating (1.3) against a test function ¢ we get

//¢pc Trdrdz+//k [g¢ gf Z¢ gT]drdz = (2.9)



—

/¢st+// d)a,,e ;rdrdz —// ¢ao;Trdrdz

where the normal flux @ = ka— is given by the Boltzmann Law

on

Q = Qin+0,6(T* = T3) (2.6)

where Q;, is the thermal input (on the boundary), o, is the Boltzmann constant, and e
is the emissivity of the surface. The heat equation (2.5) is driven by the boundary heat
input @ (which appears as a forcing term), the inelastic heating, and the thermo-elastic
coupling term.

The FEM equations for u are fairly singular when r = 0. Since the radial displacement
must vanish at r = 0 for an intact plate, we define a new variable U by u = rU. In terms
of the variables U, w and T we have

//¢pUr2drdz+// r(A+2u)(U+r—)drd +// /\(U+g—w)drdz (2.2")
ou 0 ou 0
// T‘;t(T— + i)d dz + //[425(/\ +2u)U + oMU + 6_7‘) + ¢)\-(;£—J-]drdz =
// -a—fr[2ue£r + (3A +2p)a(T - TR)] drdz + J// ¢[2,ue£0 + (32 + 2u)a(T ~ Tg))drdz+
// —aa—fr[prgz + 2ua(T — Tr))drdz
52
W// ¢>pwrdrdz+/ %ﬁry(raa—g + —aa—z:)drdz (2.4")

/ r(/\ + 2u) drd z + // rA( r— + 2U)drdz =

and

// —6—7'2/1 1, +a(T — Tg))drdz + // 2#6" + (3X + 2p)a(T — Tg)] drdz
and (2.5).

In terms of U, these equations no longer have a singularity at r = 0.




3. FEM formulation

To solve equations (2.2°), (2.4’), and (2.5), we approximate the unknowns by

i=N
U= Z U,‘(t)¢,’(7‘,2), (31)
i=N

= z wi(t)di(r, 2), (3.2)

=0

and
i=N

T =Y Tit)$i(r,2) (3.3)

1=0

This leads to the set of ordinary differential equations of the form
AV 4 cOy = ) _ By,

A®y" 4 CDy = FB - BO@y (3.4)
B®T + COT = F®

where the matrices are given by:

A(l) // ¢ipri ¢ drdz
A(z) // $ipré;drdz
B§;>=/ a(% a¢’dd +//a¢, %dd +//¢.A L drdz
BE?) = // %ur2%drdz+/ aaqi')\ 26;:’d dz +// %Z\r@drdz
B(a) // pipcyrdjdrdz

c§;>=// %0+ 200 P dras +//%(/\+2u r¢,drdz+// 9% 2 92 dra




sixr 22 a¢, drdz + -ai’iw,d dz+ [ [ 6:27 +20)¢,drdz
+f/ [[ Gtz [ |

0= [ [ BPiieass [ [ 2ir e
C;; —/ . drdz + —(A+2u )r drdz

C(3) //[a¢z 643] + a¢x a;]]drd

and the forcing functions by:

Fi(l) — // % [Qpeir + (3,\ + 2p)a(T — TR)] rdrdz+
// %— [2/15{2 + 2pa(T — Tr)|rdrdz + // ¢:[2pegp + (3N + 2)a(T — Tr)]drdz

Ft.(z) = // %2;1 [eﬁz + (T — Tg)|rdrdz + // %% [2pe£z + (32 +2p)a(T — Tg)|rdrdz

and
Fi(3)=//¢ist+//¢iajjéfjrdrdz-—//qﬁgkdjjTrdrdz

We note, for future reference, that if p, ¢,, A, p, are constant in time, and independent
of the temperature T , then the system of differential equations (3.1) have constant coef-
ficients. This makes the solution by numerical integration very efficient, and allows one
to investigate the relative importance of various terms in the equations without excessive
computation.

If the coefficients change rapidly with temperaure, the various stiffness matrices must
be recomputed (and re-factored) at every time step, which is very time consuming. If the
coefficients change more slowly, one must still periodically recompute and re-factor the
matrix coefficients.

The first integral in F i(s) is the contribution from the external heating on the boundary,
the second integral is the contribution from the heating due to inelastic deformation, and
the final integral contains the contribution due to elastic deformation.

If the second and third term are included, we call the model two-way coupled, otherwise
it is one-way coupled. In the one-way coupled model, the temperature can be computed
independently of the mechanical deformations of the material. We also note that the
second contribution is always positive, that is inelastic deformation always yields heat.

In equation (1.3), we have

a6 T = o3\ + 2;1)[2 + 24 g_w — 3aT|T
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Therefore the coefficient of the % term 1s
pcy — 302 (3X + 2u)T.

If this quantity is negative, then (1.3) is no longer a well posed parabolic equation. This
quantity is continously monitored in the numerical computations.

4. Definitions of coeflicients (for Computer Program)

In order to compute the integrals systematically, we define the following coefficients:

¢ = pr C2 = pCyT c3 =(A+2u)r

€y = Ar cs = ur ce = (A +2p)
cr=A cg = cyg = kr

c10=1.0 c11 = pr? c12 = (A +2u)r?
c13 = pr? Cis = Ir? c15 = a(3X +2u)Tr

c16 = a(3) + 2/1)T1‘2 c17 = a3(3X\ + 2u)Tr.
The flags icoeff are defined by:

icoeff = 1 for expressions of the form [ [ ¢;F¢;,

89;
or

. . 9¢;
icoeff = 3 for expressions of the form [ [ ¢;F Fr

icoeff = 4 for expressions of the form [ f %‘ériF %‘?—,

icoeff = 2 for expressions of the form [ [ ¢;F

icoeff = 5 for expressions of the form [ f %F %d;’;,
icoeff = 6 for expressions of the form [ %F %d’;"-,
icoeff = 7 for expressions of the form [ [ %F %’?—,
icoeff = 8 for expressions of the form [ [ %F é;,
icoeff = 9 for expressions of the form [ [ 42 F¢;.

The physical paramers for the material under consideration are
ktherm =4.133 x 10~ _K&cal
A =1.15x 10" MPa
p=4.9 x 10 MPa

— -6 cIm

p=8221x 10° X8

Cy = 0.1—3%1{




€ = 1.0,
tmpref = 493.0, and
steff = 3.3 x 1075,
The constitutive paramaters are given representatively by
n=1
Z; = 2.03 x 10® MPa
A; = 6.5sec™!
Z;=2;=12x10° MPa
r = 0.98.

5. System of Equations

The formulation in sections 2 and 3 is sufficient to compute the displacements accurately;
however, computing the stresses and strains (which involve gradients of the displacements)

near the origin where r = 0 is a delicate procedure. As an alternative method, we could
du Ju dw Sw T T 8T

write the system in terms of the nine dependent variables {u, 5%, 5%, w, 5%, 52, T, 5, g .
Withu1=%=U,u2 %U,U3 %U,wl—w Wy = %‘:,U)3= 6z’T1 T T2 6r’

T3 = %, the system of equations can be written as:
prel // ¢priuidrdz + //[ r(2X + 2u) + #(2A +2,u)]u1drdz = (5.1)

—// r2(\ + 2p) U2deZ—// ¢)\ru2drdz—// r2 puzdrdz
// —ruwdrdz — //[—671'/\ + ¢AJwsdrdz

3] 0
+ //[(3/\ +2u)a(e + ra—f) + 2yar5?](T1 — TRr)drd:z

0 0
+//[.a_fQ#re£r—%2ﬂT6£z +¢2#e£9]drdz

// duqadrdz = //:ﬁ%u]drdz (5.2)
// ¢U3drdz=//¢aa—zu1drdz (5.3)
el //¢prw1drdz— // ———2r)\u1drdz—// Z—frzAuzdrdz (5.4)




—// pu3drdz—// ruwgdrdz—// -a——-r(/\+2/1)w3drdz

0
+//[§(3)\ + 2u)ar + E%Zpar](Tl — Tr)drdz

+//[ 2urel, + ¢2urel ] drdz

// ¢w2d7‘d2=//¢—a—w1drdz
or
0
// pwadrdz =//¢—w1drdz
Tydrd / o krTydrd krTidrd
at//¢PCu7‘17‘2— /—7‘27‘2 //—r3rz
+/¢st+//¢ajjé]ljdrdz—//¢aéjjT1rdrdz =
//—Lrngrdz // —krngrdz+/¢st
+// ¢0 ;i€ drdz —// $ra(3X + 2u)Ty [24 + rip + w3 — 3aTy]drdz
// ¢Trdrdz =//¢-?—T1drdz
or
0
/ [omaara: = [ / 621, drd:
0z

This leads to a 9 x 9 system of ordinary equations
Alulll + A2U] = —A{1u2 - ]\1211.3 - M3w2 - M4w3 + M5(T] - TR)

A3U2 = Alsul + A3u1
A3U3 = M7’U,1

Agwy = —Msuy — Myus — Myouz — Myywz — Migws + Mis(Ty — Tr)
A3’U)2 = A{lgwl

Aszwz = Maow,

AsT] = =M Ty — MisTy + Q — 2My6ty — Myqtiy — Mygtios + Mg T

9

(5.5)
(5.6)

(5.7)

(5.8)

(5.9)




A3Ty = MyoT)
A3T3 = ]\lonl

-_—//¢,~pr2¢jdrdz
Ay = / / 992X + 2u)¢;drdz + / / $:(2\ + 2u);drdz
As = / / b:6drdz
- / / $ipré;drdz
As = / / $ipcord;drdz

M, = // 99 2(/\+2u)¢jdrdz+//¢i/\r¢jdrdz

0¢:
AJQ = / a(i rz;uj)jdrdz

M; =// %rud)jdrdz
M, = // 0¢'n\¢>_,drdz+//¢,/\¢1drdz

where

0¢;
//¢(3)\+2y a¢1drdz+// 5 (3/\+2,u ar¢,drdz+// i 2uaredrdz

M = // éir drd
M= [ [6r3 8ir 2 dr:

Mg = // 99 ——2rA¢,drdz

My —// 0¢: ri\¢;drdz

Mo -// ad)'r‘ ,uerdrdz

0¢,
AIH —// ¢ rpd),drdz



M. —// aqbtr(/\+2u)q51drdz

M13—// P (3/\+2p ar¢1drdz+// 2par¢1drdz

O¢i
My, =//—a-7'—kr¢jdrdz

M;s =/ %ergdrdz
Mg = // ¢:i(3A + 2p)raTy ¢ drdz
M17 = // ¢i(3/\+2ﬂ)T‘2CYT1¢de‘dZ

Mg = // $i(3\ + 21)302 Ty ¢ jdrdz

Mg =//¢i%drdz
My = //d),ad)]d dz

Jw—zl :/ a(lsl 6¢Jd d

ar or
_ 6¢: a¢1
Moz = / 02 62 B, 4rd

This was in fact coded up, but did not give satisfactory results.

11




6. Alternate First Order System of Equations

With the substitutions u; = U = u/r up; = %ul/r, uz = Zug, ug = a%ul, us = w,

or
ug = %—'f, uy = %’f, ug = aa—‘:, and ug = T, this leads to a slightly different 9 x 9 system of

ordinary equations.

u'l———UQ

Ajuy, = —Asuy — Myuz — Myuy — Mauy — Myug + Ms(ug — Tr)
Agug = MmUz

A3uf, = Alzoﬂz

Uy = Ug
A4ug = —Alg’ul — A’[g'dg - ﬂ110u4 - ]ll“u7 - Al]QU3 + M13(UQ - TR)
Asu; = Mous

Aguls = J\f[zo'ds
Asug + Majug + Maoug = Q — 2Mygty — My71is — Myt + Mistig

Although mathematically interesting, we were not able to numerically implement this
effectively either.
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Case 1. The laser input was given by a step function, with Q@ = Qma, = 2.5x 10* Btu/m?,
duration 0.020 sec, and a radius of 2.0 cm. The equations were integrated with §; = 0.5,
At = 0.0001, NITER=4, with condensing and smoothing flags on. No thermo-elastic or
inelastic heating effects were included.

The graph below is that of of the horizontal deflection u(rmax,zmax,t), where the
horizontal deflection reaches its maximum.

0.00035
0.0003

0. 00025t | HHHkR AR ARAA AN
0. o002l A
0.00015 I ‘
o.oooJ
0.00005

Note that a characterstic frequence of 142.5 cycles/sec is present in the radial direction,
whereas a much slow vertical oscillation is induced (see the next figure).




The following is a graph of the vertical deflection w(0,zmax, t) at the point where the
laser is impinging,.
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-0.0005
-0.001




On the same scale, we have

0.001
0.0005

0.1 0.2 0.3 0.4
-0.0005

-0.001

The r-coordinates are given by
{0.00e — 2,0.02¢ — 2, 0.05¢ — 2,0.10e — 2, 0.20¢ — 2, 0.50e — 2, 1.00e — 2, 2.00e — 2, 4.00e —
2,7.00e — 2,10.00¢ — 2}

and the z-coordinates by
{0.00e — 3,0.20e — 3,0.40e — 3,0.60e — 3,0.70e — 3,0.80e — 3,0.90e — 3,1.00e — 3}.




Case II. The laser input was given by a step function, with Q = Qmar = 2.5x10* Btu/m?,
duration 0.020 sec, and a radius of 2.0 cm. The equations were integrated with 6; = 0.5,
At = 0.00002, NITER=4, with condensing and smoothing flags on. No thermo-elastic or
inelastic heating effects were included.

The graph below is that of of the horizontal deflection u(rmax,zmax,t), where the
horizontal deflection reaches its maximum.
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Note that a characterstic frequence of 150 cycles/sec is present in the radial direction,
whereas a much slow vertical oscillation is induced (see the next figure).




The following is a graph of the vertical deflection w(0,zmax,t) at the point where the
laser is impinging.
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On the same scale, we have
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The r-coordinates are given by

{0.00e — 2,0.02¢ — 2,0.05¢ —2,0.10e — 2,0.20e—2,0.50e — 2,1.00e — 2,2.00e — 2, 4.00e ~
2,7.00e — 2,10.00¢ — 2}

and the z-coordinates by
{0.00e - 3,0.20e ~ 3,0.40¢ — 3,0.60e — 3,0.70e — 3,0.80e — 3,0.90¢ — 3,1.00e — 3}.




Case III. The laser input was given by a step function, with Q@ = Q.. = 2.5 x 10*
Btu/m?, duration 0.020 sec, and a radius of 2.0 cm. The equations were integrated with
6; = 0.5, At = 0.0001, N.ITER=4, with condensing and smoothing flags on. No thermo-
elastic or inelastic heating effects were included.

The graph below is that of of the horizontal deflection u(rmax,zmax,?), where the
horizontal deflection reaches its maximum.

Note that a characterstic frequence of approximately 140 cycles/sec is present in the
radial direction. whereas a much slow vertical oscillation is induced (see the next figure).
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The following is a graph of the vertical deflection w(0,zmax, t) at the point where the
laser is impinging.
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On the same scale, we have

The r-coordinates are given by a finer grid
{0.00e —2,0.01¢~2,0.02¢—2,0.035¢ —2,0.05¢ — 2, 0.10e — 2,0.15e—-2,0.20e-2,0.50e —
2,1.00¢ — 2,2.00e — 2,4.00e — 2,7.00e — 2,10.00e — 2}

and the z-coordinates by a finer grid

{0.00e —3,0.05¢ ~ 3,0.10e — 3,0.20e — 3,0.30e — 3,0.40e — 3,0.60e —3,0.70e — 3,0.80e —
3,0.90e — 3,1.00e — 3}.
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Case IV. The laser input was given by a step function, with Q = Qe = 2.5 x 10*
Btu/m?, duration 0.020 sec, and a radius of 2.0 cm. The equations were integrated with
6; = 0.5, At = 0.00002, NITER=4, with condensing and smoothing flags on. No thermo-
elastic or inelastic heating effects were included.

The graph below is that of of the horizontal deflection u(rmax,zmax,t), where the
horizontal deflection reaches its maximum.
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Note that a characterstic frequence of 150 cycles/sec is present in the radial direction,
whereas a much slow vertical oscillation is induced (see the next figure).




The following is a graph of the vertical deflection w(0,zmax, t) at the point where the
laser is impinging.
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On the same scale, we have
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The r-coordinates are given by a finer grid
{0.00e-2,0.01e-2,0.02¢ - 2,0.035¢—2,0.05¢ —2,0.10e —2,0.15e — 2, 0.20e — 2, 0.50e —
2,1.00e — 2,2.00e — 2,4.00e — 2,7.00e — 2,10.00e - 2}

and the z-coordinates by a finer grid
{0.00e — 3,0.05¢ — 3,0.10e — 3,0.20e — 3, 0.30e — 3, 0.40¢ — 3,0.60¢ — 3,0.70¢ — 3, 0.80e —
3,0.90e — 3,1.00e — 3}.




Case V. The laser input was given by a step function, with Q@ = Qe = 2.5%10* Btu/m?,
duration 0.020 sec, and a radius of 2.0 cm. The equations were integrated with 6; = 0.5,
At = 0.0001, NITER=4, with condensing and smoothing flags on. No thermo-elastic or
inelastic heating effects were included.

The graph below is that of of the horizontal deflection u(rmax,zmax,t), where the
horizontal deflection reaches its maximum.

Note that a characterstic frequence of approximately 120-140 cycles/sec is present
in the radial direction, whereas a much slow vertical oscillation is induced (see the next
figure).
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The following is a graph of the vertical deflection w(0,zmax,t) at the point where the
laser is impinging.
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On the same scale, we have
The r-coordinates are given by
{0.00e —2,0.01e —2,0.02¢ - 2,0.03¢ — 2,0.04¢ — 2,0.06¢ — 2,0.10e — 2,0.15¢ — 2, 0.20e —
2,0.30e — 2,0.60e — 2,1.00e — 2,2.00e — 2,4.00e — 2,6.00e — 2,8.00e — 2,10.00e — 2}
and the z-coordinates by
{0.00e — 3,0.02¢ — 4,0.04e — 3,0.07¢ — 3,0.10e — 3,0.15¢ — 3,0.20e — 3, 0.30¢ — 3, 0.40e —
3,0.60e — 3,0.70e — 3,0.80e — 3,0.90e — 3,1.00e — 3, }.
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Case VI. The laser input was given by a step function, with Q@ = Q.. = 2.5 x 10*
Btu/m?, duration 0.020 sec, and a radius of 2.0 cm. The equations were integrated with
6; = 0.5, At = 0.00002, NITER=4, with condensing and smoothing flags on. No thermo-
elastic or inelastic heating effects were included.

The graph below is that of of the horizontal deflection u(rmax,zmax,t), where the
horizontal deflection reaches its maximum.

Note that a characterstic frequence of 150 cycles/sec is present in the radial direction,
whereas a much slow vertical oscillation is induced (see the next figure).
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The following is a graph of the vertical deflection w(0,zmax,t) at the point where the
laser is impinging.
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On the same scale, we have
The r-coordinates are given by
{0.00e —2,0.01e-2,0.02e — 2,0.03e — 2,0.04e — 2,0.06¢ — 2,0.10e — 2, 0.15¢ — 2, 0.20e —
2,0.30e - 2,0.60¢ — 2,1.00¢ -- 2,2.00e — 2,4.00e — 2,6.00e — 2,8.00e — 2,10.00e — 2}
and the z-coordinates by
{0.00¢ - 3,0.02e —4,0.04¢ — 3,0.07¢ — 3,0.10¢ — 3,0.15¢ — 3,0.20e — 3, 0.30e — 3, 0.40¢ —
3,0.60e — 3,0.70e — 3,0.80e — 3,0.90e — 3,1.00e — 3, }.
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Numerical Simulations

The following numerical simulations were run to test the code’s sensitivity to mesh
size, time step, one-way versus two-way coupling, elastic and inelastic heating, and various
types of heat inputs.

Comparison of Various Effects:

In this section, we analyze the effect of including various terms in the mathematical model.
First, if we neglect the inelastic terms in the momentum equations we are solving a pure
thermo-elastic model. As an input, we have a step function, magnitude 2.5 x 10* for 20
msec duration. After it stops the plate oscillates with a frequency of about 20 hz. If we
include the inelastic terms in the momentum equations, one can see that the out of plane
displacment is correspondingly less, due to the damping of the inelastic terms. The region
of plasticity is small enough that the behavior is predominantly that of a thermo-elastic
plate under an impulsive heat sourse, with a small amount of damping due to inelasticity.
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Next, we change the input to correspond to a ramp function which is linear for 20
msec, then constant (2.5 x 10%) till 100 msec, and then abruptly turns off. From the
graph on the next page, one can see that a slowly varying oscillation is induced about the
displacement which arises from a constant temperature source. Turning off the impulsive
heating then gives rise to noisy oscillation which is then damped out. Asymptotically, the
motion is damped oscillation about a displaced equilibrium state.




0.0001+

L)

0.00005+

Response to 20msec ramp function

-0.000054

-0.0001+

P




Finally, we have incorporated the inelastic terms in the momentum equations, and
tested the inclusion of the thermo-elastic and inelastic heating terms in the heat equation.
This gives rise to the figure on the next page. The results are virtually indistinguishable.
Numerical instability set in at the end of the run, due to small oscillations in the stress
levels reaching a certain amplitude. When the inelastic stresses and the thermal stresses
are of the same magnitude with the resultant stress, the numerical codes become very
sensitive to slight integration errors. This appears to be an intrinsic difficulty with initial
value methods for integrating the dynamic plasticity equations.
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Summary:

The following is a summary of the results which we have observed after solving the three-
dimensional, axi-symmetric, fully coupled, thermo-viscoplastic equations for a laser heated
thin plate.

1.

If the heat impulse is of sufficiently short duration, and very localized near the center
of the plate, the fundamental response is that of an elastic plate under a point load.
This is true under both stress-free and clamped boundary conditions.

If the heat impulse is ramped, a slow oscillation about a buckled state (which would
be given by constant thermal input) is observed. After the heat source is turned off,
a complicated return to a permanently deformed state is observed.

. The inclusion of inelastic effects in the momentum equations accounts for about a

5-10% change in out of plane displacements.

The inclusion of inelastic two-way effects affects the out of plane displacements very
little (less than 2% observed change).

Relatively large grids may be used away from the boundary thermal input. The time
step limitations is primarily due to the rapid thermal heating characteristic time.

The following appears to be the approximate ranking of effects in the boundary heated,
no external loading, axi-symmetric plate problem:

a) Boundary heating, temperature response can approach 1000 degress Kelvin/sec
or more. The induced thermal stresses and strains.

b) Inelastic corrections to the deformations, and the resultant change in stress.
¢) Two-way thermo-elastic coupling.

d) Two-way thermo-inelastic coupling. This effect is extremely localized.




Conclusions:

The use of a finite element code to solve the initial value problem describing the mechanical
response of a thermal-input driven axi-symmetric plate appears to yield reasonable short
term response. If the duration of heat input is the characteristic time, then the finite
element code could predict reasonable results up to 10 or 20 characteristic time intervals.

The simulator can distinguish between elastic and inelastic effects, as well as one-way
versus two-way coupling in the initial stages of nonlinear thermal-mechanical response.

The dominant effect is that of thermo-elastic oscillation under impulsive loading, with
secondary (permanent) inelastic deformations and damping, with tertiary thermal input
corrections due to two-way elastic and inelastic coupling.

Long time integration of the equations (on the order of 10,000 or more time steps)
did not appear reliable with the current code. Even though implicit predictor-corrector
and stiff integrators were used throughout, the accumulated error in the stress-strain pre-
dictions, and the sensitivity of the constitutive laws to errors in maximum stress, lead to
innaccurate asymptotic behavior. Constraining the inelastic behavior to lie on the correct
energy surface was difficult to impose with the initial-boundary value finite element model.

Large residual stresses, due to permanent inelastic deformation, also limit the time
step-size, even after the plate has ceased to be thermally excited.




Appendix 7.2

A Model for Predicting
the Effective Elastic Properties
of Randomly Oriented Fiber Composites
Subjected to Hot Pressing, Extrusion, and Rolling




A MODEL FOR PREDICTING THE EFFECTIVE ELASTIC PROPERTIES OF
RANDOMLY ORIENTED FIBER COMPOSITES SUBJECTED TO
HOT PRESSING, EXTRUSION, AND ROLLING

Jong-Won Lee* and David H. Allen**
Aerospace Engineering Department
Texas A&M University, College Station, Texas

Abstract

The present paper develops analytical solutions
for predicting the effects of hot pressing, extru-
sion, and rolling on the elastic properties of

.composite materials reinforced by either continu-
‘ous or discontinuous randomly oriented fibers. The
‘bounded orientation of fibers in the matrix mate-
rial is explicitly expressed in terms of manufac-
turing parameters. These manufacturing parameters
account for hot pressing, extrusion, and rolling
of an initially isotropic composite with randomly
oriented fibers prior to the above material form-
ing processes. The effective elastic properties
after material forming are given as functions of
material forming parameters representing dimen-
sional change during manufacturing and the five
independent elastic constants for a perfectly
aligned fiber composite. Finally, the present
model predictions are compared with other theoret-
ical models and experimental data.

Nomenclature

aiy direction cosines

Cijkl stiffness tensor for an aligned fiber

composite

Cijsk1 stiffness tensor in the spherical coordi-
nates of an aligned fiber composite

Eijkl stiffness tensor after material forming
where i, j, k, 1 =1, 2, 3

stiffness tensor in contracted Voigt
notation where i, j =1, 2, ..., 6

O
[
[

diameter after extrusion

diameter before extrusion

Young’s Modulus

fiber

fiber volume fraction

shear modulus

matrix

1jk1 Eshelby's tensor

ta thickness after hot pressing or relling
Ty thickness before hot pressing or rolling
€ strain tensor

Eijk1 Qquasi-stiffness tensor

o4 stress tensor

v Poisson’'s ratio

(=4
®

X QO

* Research Assistant
** Professor

I. Introduction

A number of models have been proposed for pre-
dicting the effective elastic properties of
aligned or randomly oriented fiber composites.l‘
The equivalent inclusion method utilized by Taya
and Chow’, and Taya and Mura® provides a straight-
forward tool for estimating the effective Young's
modulus of a composite reinforced by either conti-
nuous _or discontinuous fibers. Hashin and Rosen’'s
method! may be utilized to estimate all elastic
properties of aligned fiber composites. The effec-
tive elastic properties have been calculated for
two _or three dimensionally random fiber orienta-
tion”"® and bounded fiber orientation in a two
dimensional domain® wurilizing simple integration
schemes. However, these models are not directly
applicable to a composite experiencing certain
types of material forming because forming pro-
cesses induce oriented fiber distribution.

A systematic procedure has not previously been
developed to model an arbitrarily bounded random
orientation of fibers caused by material forming.
The authors thus propose herein a relatively
simple mathematical/graphical model for determin-
ing the influence of bounded random orientation of
fibers on the effective elastic moduli of continu-
ous/discontinuous fiber reinforced composites.

(»] :Reb Qo)

Consider a single representative volume element
of a composite material reinforced by continuous
or discontinuous fibers, as illustrated in Figs.
l-a and 1-b, respectively.

(a)

I fiber

matrix

B o —"
\

Fig. 1 Representative volume elements

(a) Continuous fiber element
(b) Discontinuous fiber element




It is clear that the above volume elements are
transversely isotropic, thus five independent
elastic moduli should be determined theoretically
or experimentally for both cases. Since it is very
cumbersome to solve an exact boundary value prob-
len associated with the double cylinder model
shown in Fig. 1-b, the authors utilize the equiva-
lent inclusion method proposed by Taya, et a1.”.
For a continuous fiber composite, a number of the-
oretical solution schemes have been investigated
for determining the five independent elastic mod-
uli of the transversely isotropic volume ele-
ment.1+4 When the fiber length is very large
compared to the fiber diameter, these solution
schemes may be applied to a composite even with
discontinuous fibers.

For convenience, the composite elastic modulil of
the volume element are assumed to be known. In
matrix form, they can be written as

011) €11 €12 €12 © 0 0] f)
o22f | €12 C22 €23 O 0 0] |2
ful | oncmen o o olinl
093 0 O 0 (Cyp-Cy3) 0 O] [€23
031 0 0 0 0 26 O[3
r2g) [ © 0 o o 0 2Cgq) |12)

If a composite is initially isotropic, the rein-
forcing fibers do mnot have a preferred orienta-
tion. The probability density distribution for
fiber orientation may be represented by a sphere
in the three dimensional case. In the case where
the fibers are distributed randomly in a single
‘plane, the sphere degenerates to a circle. The
degree of randomness of the volume element can be
mathematically formulated for an initially iso-
tropic short fiber composite after certain types
of permanent deformation, such as hot pressing,
extrusion, or rolling. When the composite is sub-
:jected to hot pressing or extrusion, the material
‘becomes transversely isotropic. For example, a
cube becomes a square plate or a cylinder becomes
'a circular disc, and vice versa. For an arbitrary
‘thickness change and diameter change due to hot
pressing and extrusion, respectively, an initially
i{sotropic composite becomes transversely isotropic
under a transversely isotropic forming process as

1llustrated in Figs. 2-a and 2-b. Alternatively, a:

forming process such as rolling causes orthotropic
reorientation of fibers, in which one of the
dimensional changes is negligibly small as shown
in Fig. 2-c.

The present approach requires three assumptions:

1. Although the fibers after each of the mate-
rial forming processes mentioned above may not be
evenly distributed within the subdomain illus-
‘trated in Fig. 2, the fiber distribution density
‘is assumed to be spatially homogeneous for mathe-
imatical simplicity.

2. The material forming processes mentioned
{herein are possible only through the plastic
deformation of the matrix material. Plastic strain
may not be spatially homogeneous in the matrix
material due to stress concentrations near the
reinforcing fibers. Also, it {s well known that
even an isotropic homogeneous material becomes
transversely isotropic or orthotropic after the

subject forming processes. This plasticity effect
is neglected in the present study.

3. The material forming processes mentioned
above may cause defects, such as broken fibers,
fiber matrix debonding, etc. Furthermore, micro-
voids cannot be completely removed from the com-
posite. The present study assumes a defect-free
composite.
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Fig. 2 Fiber reorientation due to forming

(a) Hot pressing
(b) Extrusion
(c) Rolling

hd sSin

The composite stiffnesses after reorientation of
each volume element due to hot pressing depend on
the ratio of virgin material thickness to formed
thickness. From Fig. 2-a,

ta

sing = - £ (2)

b

Thus, the stiffness components after hot pressing
are given by .

L ® n/2 +Y
Cijk1 = __J J Cijk1 sind df d&8 (3
2% siny 0 /2 -
n/2 =
where
Cijkl * 3ip 8jq 3kr 21s Cpqrs (%)




As shown in Fig. 3, the direction cosines, agy,
can be defined as
sinfcosé -cosfcos¢ sing
854 % | sinfsing -cosfsing -cos¢ (5)

cos? siné 0

Fig. 3 Direction cosines

Substituting (4) and (5) into (3) gives the five

independent elastic constants after hot pressing

in terms of the thickness ratio and the elastic

;ﬁnstants of a perfectly aligned fiber composite.
us,

tn - C2
- C11(3/8 - €274 + 3¢4/40)
+ Cp2(3/8 + €2/12 + 3¢4/40)
+ Cyp(1/6 + £2/6 - 3¢4/20)

+ Cgg(l/2 + €273 - 3£4/10) (6)

Ci3 = C11€%/5 + Cop(1 -262/3 + €4/5)

(7
+ (C19+2C¢g) (262/3 - 2€%4/5)
C1a = (C1+Cpp-4Ceg) (1/8 - £2/12 + £4/40)
(8)
+ C362/3 + C19(3/4 - €276 - ¢4/20)
. €G3 = Cp3
= (C11+Cpp-4Ceg) (£2/6 - €4/10)
+ C12(1/2 - €276 + €4/5)
(9)
+ C23(1/2 - €2/6)
- (C11-2C12)(€2/6 - (4/10)
+ Cop(1/6 + €212 - €4/10)
- Ca3(1/4 - €2/12)
+ Ceg(1/2 - €272 + 2¢%/5) (10)

Ces = (C11-C12)/2 (1)

When the hot pressing ratio, £, is cero, the
transversely isotropic material properties studied
by Berthelot” are recovered as listed below.

€11 = €22
- 3(C11+C22)/8 + (Clz + 2C66)/4 (12)
Ci3 = Cp (13)
Cip = (C11+Cpp-4Ceg)/8 + 3C1p/6 (14)
Cy3 = Ca3 = (C12+C23)/2 (15)
Cu, = Cs5 = (€z2-C3+2Cge)/b (16)
Ces = (C11-C12)/2
(17)

(C11+C22-2C12+&C66)/8

Christensen® also predicted 3-D isotropic and
transversely isotropic material properties of a
composite with randomly oriented continuous fib-
ers. By setting changes in dimensions to zero, {.
e. £ =1, the present approach simplifies to the
3-D isotropic material properties predicted by
Christensen listed below.

Ty = (3C11+4C)p+8C2+8Cg6) /15 (18)

612 - (C11+8C12+C22-4C66+5C23)/15 (19)
. . o
From Fig. 2-b, the stiffness components after

extrusion are given by

x x/2 —¥

_ 1
cijkl - J J cijkl sind 4§ aé (20)
n(l-siny)
0
Da
cosyp = — , sinyg = ¢ (21)
Dy

Thus, the effective elastic properties after
extrusion are given by

€1 = 2
- C11(8-7¢-2¢243¢343¢%) /00
+ C99(66+19¢+19¢249¢349¢4) /120

(22)
+ (C19+2Cgg) (16+5+c2-9¢3.9¢%) /60

___]




E33 - Cll(l+;+;2+(3+;‘)/5

+ C(1-£)2(8+9¢+3¢2) /15
(23)
+ (2017+4Cgg) (1-¢) (2+45+6¢243¢3) /15

€12 = (C11+C2-4Ceg) (8-75-752+3¢3+3¢%) /120
- €12(-32+13¢+137243¢343¢%) /60 (26)

+ C23(1+§+52)/3

Ci3 = Ca23
= (Cy1+Cgp-4Cee) (2+25+2¢2-3¢3.3¢4) /30

+ C3(2-5-£2)/6
(25)
+ C1o(16+c+5246¢346¢%) /30

Cas = Css
- (C11-2C39)(2+2¢+2¢2-3¢3.3¢%) /30
- Ca3(2-¢-¢2)/12

+ Cyp(l4-g-¢2-6¢3-67%) /60
(26)
- Cggl-a+g+c2-0403-40%) /10

666 - 612 - (Ell+612)/2 (27)

- Ro
'
. In the case of rolling, the fiber reorientation
kinematics are slightly different from the above
cases. Since the thickness change is much greater
‘than the width change, the width change may be

‘assumed to be negligible. From Fig. 2-c, the

effective stiffness components and thickness rztio

after rolling are then given by

Cijk1 ~ Ciji1 siné df &g (28)

< |

< |
—
NE—

siny = (29)
b
! The effective elastic properties after rolling

ithen become orthotropic, resulting in nine inde-
'pendent elastic constants given by

!
I
i
)
i

fll =~ C11(3 * 2sin2¢/¥ + sinbp/4y)/15

€22 + Cp2(8 F 3sin2y/y + sinbyp/4y)/15
+ (2C99+4Cge) (2 % sin2y/2¢ 30
- sindy/4y) /15

€33 = C11/5 + (4C19+8Cgg) /15 + 8Cp/15 (31)

Ci12 = (€114C22-4Cee) (1 - sinbp/bw)/15
(32)
+ C23/3 + C1o(8 + sinky/2¥)/15

13
- (C11+C22'4C66)(1 * sin2y/2¢) /15

Ca3 (33)
+ C23(1 ¥ sin2y/2¢)/3

+ C17(8 % 3sin2¢/2¢)/15

(TAA
= (£11-2€12)(1 ¥ sin2¥,/2¥)/15

Css
- C23(1 % sin2y/2¥)/6

+ Cg2(7 = 3sin2y/2¢)/30 (34)

+ Cge(2 F sin2¢/6¥)/5

Cee = (C11-2C12)(1 - sinkp/4p)/15

- Cg3/6 + Coo(7 - sinky/29)/30
(35)

+ Cgg(2 + sinby/39)/5

. Aligned Short Fiber Composite

As mentioned earlier, the five independent elas-
tic constants of a perfectly aligned fiber compos-
ite must be known prior to the forming process.
The shape of reinforcing short fibers or whiskers
has been _frequently assumed by a number of
researchers’/:® to be a prolate spheroid. This
approach is known as the equivalent inclusion
method from which all elastic constants of a com-
posite reinforced by aligned inclusions can be
estimated either analytically or numerically. The
effective compliances of an aligned short fiber
composite, or those of the representative volume
element shown in Fig. 1-b are given by

1M -l F M
Cijkl = Cijk1 - (£/2)( Cpppq - Cmnpq ) X
(36)
_ o -1M -1 1M -1
( Z13mn Cpgkl * Zklmn Cpqij
iwhere
[
_ F M
Zijk1 = (-5 C Ciymn - Cijmn )Smnkl
(37)

M F
+(1-£) Cijkl + £ cijkl

and siéklo is Eshelby’'s tensor for a preclate
spheroi
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IV. Resultrs and Discussion

From the present study, the effective elastic
constants for aligned continuous or discontinuous
fiber composite can be predicted. When the fiber
aspect ratio approaches infinity, eq. (36) gives
the effective elastic constants for an aligned
continuous fiber composite., After the effective
elastic constants of aligned fiber composite are
calculated by eq. (36), the solutions to the sub-
ject material forming processes discussed earlier
can be utilized for predicting the material prop-
erties after each forming process. The solutiomns
to extreme hot pressing where ty/tp = 0 can be
compared with an experimental result of two dimen-
sional random fiber composite.

The effective transverse Young's modulus calcu-
lated from eq. (36) is compared with the exper-
imental data in Tsai and Hahn**, as shown in Fig.
4,
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| Fig. &4 Transverse Young's modulus of a
[_ continuous fiber composite

In Fig. 5, the effective elastic constants for a
composite with aligned discontinuous fibers calcu-
lated from eq. (36) are illustrated for glass
fibers in polystyrene. The elastic constants
shown in Fig. 5 are then utilized as input data
for determining the effective Young's modulus of
the same composite with randomly oriented fibers
in & two dimensional domain. Fig. 6 shows the
comparison between the present study and the
experimental result of Lee.

The variations of the effective Young’'s modulus
in the major axis are illustrated in Fig. 7 for an

ideal short fiber composite subjected to each of
the three material forming processes discussed
earlier. Consider an extreme case in which the

thickness ratio is zero. In such a case the fibers
after hot pressing or rolling become planar. The
material properties after hot pressing become
transversely isotropic, while those after rolling
remain orthotropic. When the material is subjected
to an extrusion in which the diameter ratio
approaches zero, the material properties of a per-
fectly aligned fiber composite are retrieved as
shown in Fig. 7.
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V. Concluding Remearks

From the present study, an engineering tool is
proposed for theoretical evaluation of the elastic
properties of a composite with perfectly aligned
short fibers. Since a practical manufacturing
scheme for the subject composite has not been
developed, all existing analytical models except
for those of continuous fiber composites cannot be
directly verified by experimental data. Therefore,
;the authors propose herein an alternative method
‘which minimizes the required effort and number of
specimens. If the material elastic properties
after a known material forming process are meas-
ured, the five elastic properties of the aligned
ifiber composite can be obtained by inverting the
explicit solutions to hot pressing, extrusion or
rolling discussed herein. The effective elastic
properties of the same composite after different
material forming processes then can be predicted
using the same expression but with different mate-
rial forming parameters. Also, the five indepen-

. LIS
I.

dent elastic constants obtained this way can be
used for evaluating all existing empirical and
theoretical models.

The present model can be generalized for com-
bined material forming processes, such as trans-
verse rolling after extrusion and transverse rol-
ling after longitudinal rolling. In the former
case, the # rotation occurs prior to the ¢
rotation. Alternatively, the ¢ rotation is fol-
lowed by another ¢ rotation in the latter case.
Thus, the elastic properties of two final products
with the same dimension may be different if the
material forming histories are different. In con-
clusion, the entire material forming history of a
composite reinforced by continuous or discontinu-
ous fibers must be known a priori in order to pre-
dict the material elastic response.
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ABSTRACT

The Benveniste reinterpretation of the elastic version of the Mori-Tanaka
method is extended to model the viscoplasticity of composites containing voids
and/or microcracks. The matrix unified viscoplasticity equations of Mille-
are cast in a total strain formuiation to yield the instantaneous tangan:
stiffness for use in the micromechanics model. For steady state creep, the
composite strain rate is given in terms of the matrix stress rate. Initial
yieicd surfaces are crawn for SiC/A1 composites.

. INRTRODUCTION

Products manufactured by tne sintering or not pressing of meIzl powaers
are ¥inding increased use due to improvements in fabrication to near-net-shape
and control of density. Filters and bearing cages are intentionally

manufactured with a high degree of porosity. Conversely, load bearing powder
metallurgy products such as superalloy <turbine blages anc Sil/eluminum
aircraft stractures require the highest possible densification.

Constitutive equations describing the elevated temperature behavior of
reinforced perous metals are needed to erable their efficient production and
service. The high temperature behavior of metals is best described by unified
viscoplastic constitutive equations [Miiler (1987), Walker (1984), &nd Bodner
(1984)]. The unified equaticns combine plastic and creep strains in a single
inelastic strain, and the models do not utilize a yield condition or delineate
regions of purely elastic deformation. The constants in these unified
eguations are obtained from creep, monotonic tension, stress relaxztion and
cyclic tests. wWhen the composite is modelied from =& phenomenologica?
perspective, this test regimen must be repested <or eacn combination of
reinforcement and void morphology and volume fraction. A more efficient
approach is to obtain the constants for the neat matrix from a single set of
tests. The matrix constitutive equations could then be used in &
micromechanics model to predict the overall composite behavior for varijous
combinations of inclusion morphology and volume fraction.

At & representative material point, micromechanical constitutive
modelling requires the solution of a localization boundary value probliem
followed by & homogenization procedure. The phenomanclogice?! &pproach o
constitutive modelling is therefore computationally more efficient than the
micromechanical approach. As the macroscopic history and rate dependent
response of porous composites is not intuitively simple, & micromechanical
moge} may be used to provide insight into the proper form of phenomenological
models.

Due to the second phase reinforcement, voids, and microcracks,
phenomenological composite constitutive equations should account for pressure
dependent anisotropic flow even though the matrix may bes inslastically
isotropic. A number of pnenomenological models have been proposed for meta:
mairix compesites. Ovorak and Rac (1976) deveioped rzts-<naspendan- harasning
and flow rules for z composite consisting of 2 non-hargening matrix reinforcec

B -3 Tae=% s S T it - < - 1% e - P S e s
Witn coniinuous elastic fipers. Tnes oradictec piastic ciizzzTion was of =ns
S&mE oresr of magniiuce 2t Tns £iasTic cijetation.  Fomosit. ane miswooracue
WETE NIT lonsigersc.  More racerity, Roninson st &, (1SET frmtwgoucss B Se-




based unified viscoplasticity theory for transversely isotropic, fully dense
composites. In both of these studies, the inelastic strain rate was obtained
from normality to a macroscopic y1e1d function or its rate-dependent analog.

For porous metals, however, the inelastic strain rate is not generally normel
10 the phenomenological yield function. The problem is then complicated by
the need to identify both a dissipation function and & yield functior.

[Nemat-Nasser and Shokooh(1380)]

Micromechanics models have also been deve]oped to predict the inslastic
penavior ¢f compDsSites &nc porous msEtais.  (nu &énc Hasnin {1571‘ gooiisc Ths
‘romposite spneres assembiags® mogsl IO Dredici tne pui. moouius oF sIraiie-
hardening metals containing either elastic par:ticies or cavities. Tne resuits

indicated that plastic macro-dilatation was not significant for elastic
particles, but was very significant for porous metals. The Mori-Tanaka (1973)
extension of Eshelby's (1957) -equivalent inclusion method has been used tc
model rate-independent plasticity [Arsenault and Taoya (1987), Tandon and Weng
(1988)]) and creep [Zhu and Weng (1989)] of metals reinforced with elastic
particies and whiskers. A11 of these micromechanics msthocs made use OF
deformation plasticity theory to model the matrix. £ ‘“vanishing f{iber
diameter" model has been developed by Dvorak and Bahei-E1-Din (1982) to
predict the mechancial behavior of a kinematic-hardening, rate-independent
matrix reinforced with elastic fibers. More recently, Dvorak and Bahei-£1-Din
(1987) developed a "bimodal" plasticity theory for fibrcus composites with
non-hardening matrices. The composite response was described in terms of
either a fiber-dominated mode or a matrix-dominated mode. Aboudi (1987) has
predicted the response of composites consisting of metals, described by
unified viscoplasticity -equations, containing elastic reinforcement and
voids. The method is a simplification of & non-cizssical, or “continuum with
microstructure" type model introduced by Sun et al. (1968) to study wave
c¢ispersion in laminates. The model was subseguently extendec o mode! Tibrous
compesites by Achenbach and Sun (1872).

Apparently, no ‘"effective modulus" (defined in the sense of Hashin
(1983)) micromechanics theory exist:s to predict the mechanical rasponse of
unified viscoplasticity-type metals containing particulate elastic
reinforcement and/or voids and/or microcracks. This shortcoming is in par:
due to the complicated nature of the composite inelastic deformation. Due to
second phase reinforcement, voids and microcracks, metal matrix composites
have low ductility. The matrix constitutive equations must therefore account
for both elastic and transient viscoplastic deformation. Alsc, inelastic
deformation can alter the symmetry of the matrix stiffness, and macro-
proportional loading may result in micro-nonproportional loading. Therefore,
the present research has been undertaken to develop & model with the
aforementioned capabilities. First, a micromechanics model is developed by
extending to viscoplasticity Benveniste's (1987) reinterpretation of the
elastic version of the Mori-Tanaka (1973) method. Next, the matrix unified
viscoplasticity equations of Miller (1975) are cast in a total strain
formulation suitabie for use in the micromechanics model. Finally, the
composite constitutive eguations are presented in the unified form.

£lthougch the presence o0F tha reinforcement may leacd o significant
material strengthening of the in-situ matrix [Teve anc Arsenauls (188%),, In=
presant angiysis is zoncarnec cniy witn mecnanizz’ cness fnTerazTicr




II. MODEL FORMULATION

In the present study, the Mori-Tanaka method has been used tc develop &
mean field micromechanics model of a particulate reinforced metal matrix
composite. The model is applicable at nign nomologous temperatures. The
reinforcing particles are assumed to be linsar elastic. Nonlinear composite
behavior results from the viscoplastic character of the matrix material.

~. Maztrix fonstitutive Zouation:

Tne originai unifiec viscopiasticity tneory c¢f Milie- {137, g
reproducss in Table 1. Althougn more recent and more accurate vercions cf
Miller's (1987) model are availabie, the simple original eguationc ars better

suited 0 elucidate the phase interaztion in <he composite. STh evolution law
for the kinematic hardening variable, or “back stress", 04 5 is similar to
the familiar Baijley-Orowan form of strain hardenins and cstiztic (tnﬂrma‘)
1recovery (softening). The evoiution law for the isotropic haragening variabie,
or "drag stress", D includes a dynamic recovery term. ine back stresc and

drag stress are coup]ed in equation (1.4), The back stress is constrained to
be purely deviatoric.

Tabie 1. Summary of the Miller Constitutive Theory
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At high homologous temperatures, the inelastic behavior of metals can no
longer be described in terms of the yield function of classical plasticity.
However, surfaces of constant inelastic strain rate, or SCISRs, formulated in
stress space, have been shown experimentaliy [Blasz and findley (1871}] anc
analytically [Robinson (1985)] to serve as a viscoplastic analogy to the yield
surface of classical plasticity. That is, the SCISR is a flow potential for
the inelastic strain rate. The inelastic ctrzin rate in Miller's model can e
derived from a8 compined hardening type potentia!.

~
N~

- = 7:' (S_;J - v,-'jl \C_lj - 5_;:;,1 - '-5., = J Z
Thus, equation {1.2) is analogous tc the flow rule cf classica’ plasticite,
.1 ; af -
‘1§ T " 9o, (3)

1]

We make the usual assumption that the back stress is initially zero anc
the initial value D, of the drag stress corresponds to the 0.2% offset “rielg”
stress in a uniaxial test. In classical plasticity, inelastic deformation
does not occur until the stress state reaches the initial yield surface. From
inspection of the flow rule (1.2) and the squivalent inelastic strain rate
(1.5), it is apparent that inelastic deformation begins concurrently with the
applied stress. The inelastic strain rate is negligible, however, if the
effective stress is small relative to the drag stress. Also, due to static
recovery, the inelastic multiplier X is not generally equal to zero for
tangential, or neutral, loading in the deviatoric plane or paraliel tobthe
hydrostatic axis. In fact, inelastic flow will occur unless 45 % S5
Urnilike the yield surface of ciassicel plasticity the SCISR is fres to contrac:
as well as expand.

The stress state must 1ie on the SCISR at all times. By differentiating
(4) the consistency condition can be written &s
sF . by _ 2 n0 -
5013 (655 - &53) =300 (6)
The kinematic hardening rule (1.3) is similar in form to,Prager's rule of
kinematic hardening. Indeed, at 1low temperature and ¢, recovery is

negligible, and Prager's rule of linear kinematic hardening is recovered.
Although Prager's rule is physically correct, it is not geometrically correct
in all stress subspaces. Fortunately, Prager's rule is geometrically correct
for a number of matrix stress subspaces corresponding to technologically
relevant composite loads. For the micromechanics analysis, consider the case
where the inhomogensities are aligned along the spacimen principal axes, the
composite loading is along the principal axes, and no shsar tractions are
applied. One possible configuration satisfying these constrzints is shown in
Figure 1. Under these circumstances, the average shear stress in the matrix
is zerc. Prager's rule 1is correct in & siress &-space Tres cf shear. in
fact, tne specimen axes now coincide with the principel axes of matrix stres

anc¢ Prager's ruie is correct in tne supspacz o D-INCIDE T SIressss wnen T
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Equations .(3) thru (6) enable the derivation of the instantaneous
stiffness corresponding to
30, .
_ 1
ijk1 L.
dEL
Following the deriva;lon in the Appendix, we obtain

L (7)
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At small inelastic strain, Miller's model predicts primarily kinematic
hardening.  Thus, because mestal matrix composites have low ductility, we
predict predominantly kinematic hardening of the in situ matrix. It is well
known that kinematic hardening may induce inelastic anisotropy. 1In & complete
elastic-plastic stiffness such as (&), isotropic hardening induces anisotropy
in the instantaneous stiffness. Deformation theory does not usually account
for development of anisotropy.

E. Micromachanics

In order to extend Benveniste's (1987) reinterpretation of the elastic
version of the Mori-Tanaka (1973) method to viscoplasticity, we relate a
history of the two phase self-consistent scheme. The use of the self-
consistent method to predict the “"sffective”, or overzll composite, stiffness
of elastic-plastic matrices reinforced with elastic inhomogensities has
evolved along two paths - - the "equivalent inclusion method" and the “direc:
approach."  For comprehensive reviews, ses Mura (1982) and Hashin (1983),
respectively. As originally formulated by Eshelby (1957), for dilute
concentrations of inhomogeneities, the eguivalent inclusion method makes use
of an "equivalency condition"

i o} P _ m o *
Cliskalen * 5 * eia) = Cigialeg * gy 7 efy - gy (10)
The reader should note that in the above eguation and in thz remainder of the
paper superscripts denote qualitative description of the associated variables,

whgreas subscripts represent tensoriai components. Thus in  (10)
C%jk] and C ?jk? denote the elastic s:tiffness of the inhomogansity anc
matrix, respeciively, az} is tne far-fielcd sirein, e ig tha strein in
the inhomogensity, £~ is <the mairix plastic s:raﬁn.‘ anc s:i is tns
“eouivalent Transformetion strzict, o- teigenstrain.' Zenelbys orinzice”
TESUIT wat TnzT uniform sIvair Siztcs are oroguzes G- ar e T dnscsic:




inhomogeneity embedded in an infinite matrix under uniform strain cg] and
uniform plastic strain cE1. The method was subsequently extended by Mori

and Tanaka (1973) by including a "back stress" analysis which accounts for the
mutual interaction between innomogeneities. (Composite elestic and plastic
hardening moduli were obtained from energy principles. The Mori-Tanaka back
stress analysis has, in turn, been extended by Taya and Chou (1981) tc include
two types of inhomogeneities.

£¢ pointec out Dy Hili {18g5&; in nic self-comcisient ena-wele  of
poiycrystaiiline piasticity, tne matiriy Instantaneous sti“fnegse, rEIn2r INEn
the elastic stiffnass, snould be wused in tne solution of the ‘“au:iliary

problem" of a single grain embedded in an elastic-plastic matrix. Fcilowing
this recommendation, Tandon and Weng /1988) corrected the Mori-Tanaka methoc

replacing the elastic stiffness C?jk] in egquation (10) with the

T

instantansous stiffness LTjk] and removing the plastic strain ci1 from the
equetion. The resulting equivalency condition in the incremental form is
i o} ~ m 0 - *
C.. d + + = L., ; -
jgk1(degq + deyy = deyq) = Ligq(deyy + deyy + deyy - deyy) (11)
where dEk] is the increment of the Mori-Tanaka “"back szrain.” We note that

the Mori-Tanaka formulation for an elastic matrix is recoverec 1ii the

instantaneous stiffness Lmijk] is replaced by the elastic stiffness CTjk]'

following Hi1l (1863), we write the “direct approach” to the composite

o] =3ir g+3¥fne C
ejastic stiffness “5 3k as
_ Am i, Al _m
Cisk1 = S5 * € Chsmn = O 5mn) Amnin? (12)

where c' is the reinforcement volume fraction and the brackets denote the
orientation average. The composite elastic stiffness can be obtained
following the determination of the orientation dependent "strain concentration
factor" Aijk]’ which gives the average innomogeneitfy sirain in terms of ing
uniform composite strain. The determination of Aijk] is the essenticl
difficulty in the micromechﬁnﬁcs method. For dilute concentrations of

inhomogeneities, the tensor i5k1° Tijk] can be obtained from Eshelby (1957)
&s

Tooa=lTooq + 8. (€™ yhydd _emoyyt (13)

1jk1 ijk1 ijmn® “mnop opk1 opk1

wnere Sijmn is the Zshelby tensor, and :ﬁjkl is the icsntity tensor. foOr &
npn-di]u:a concentrétion ©F innomogensitiss, Tns stréin ZoncentreTion tensor
shouic 2z cerivec ir & mamnar wnizn Takes  fnmIo :zzount Tne DaEvIicis
intaraciien. HiTT [198383) opteinec sucn & concantratior tensov i onic Moireo




approach" to the self-consistent scheme for two-phase composites.

The Eshelby tensor is & function of the particle aspect ratios and the
instantaneous matrix stiffness. Mura (1982) has given single integral
equations for the Eshelby tensor corresponding to the case of & transversely
isotropic matrix with its crystalline directions coincident with the principal
directions of a spheroidal inhomogeneity of any aspect ratio. For the case of
& generally orthotropic matrix containing spherical innomogensities, Morric
(1870) has given double integrals for the Zshelbv tensor.

in orge- Tz use Murz'c  integrzlt for the icneipy  Tansor. Tne
1nnomoc°n~.t1es are assumed ¢ be ealignes in the x. girezticr. Tne
croscopic  loading is constrained Ic  render the iRstantanescu:s matrix

X1

s»1ffn=ss, at most, transversely isotropic about the xy axic. This condition

is not overly restrictive, as it allows for the application of hyarostat ic
pressure and comb1ned tension/torsion, anc triaxial stress states in which

811 = &g+ 633 = 0.

Recently, Benveniste (1987) made the remarkable observation that the non-
dilute strzin concentration tensor could be obtained from a “eexam1na.1on of
the elastic Mori-Tanaka method in terms of equations (12) anc (12).
Benveniste et al. (1989) subsequently extended the analysis to predict the
effective elastic stiffness of compesites with two types of inhomogensities.
Recall from equation (11) that the elastic-plastic form of the Mori-Tanaka
method is obtained by replacing the matrix elastic stiffness with the
instantaneous stiffness. Therefore, the elastic-plastic form of the
Benveniste gj al. (1989) method can be written in terms of instantaneous
stiffness Luijk]' In the remainder of the paper, eguations will be cast in

rate, rather than incremental form. Under an applied uniform sirain rais

é?j’ the composite instantaneous tangent stiffness Lijk1 is given as
1. = rnr r ]-l 1
ikl [i cl ijmn mnoa] [‘ 3 onk1‘ (14)

where r = 1 denotes the first particie type,
2 denoies the seconc particie typs, &nd
m denotes the matrix phase.
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The average phase strain rates are given by

. T r .0 .
E-.=A.. - =
i3 $3Kk1 Eki r=1,2,m (15)
or
.T -r .m
£ = 7., =12 (16
43 ijk1 fk1° TE2ae (16)
where the metrix strain raze fc weitten in terms ¢f the anciiec sirair rais




.m roor -1 .o
The dilute strain concentration tensors T;jkl are given in the form
r _ r m -1 ,r M =1 1o
Tijk] - llijkl M Sijmn(Lmnop) (Lopst i I'opst)J v TR (18)
L, o (10)
k1 T ik R
wnere the Tourth-orcer uni: tensor is aefined by
it

£
ERY Lol
'

ik

S

Similariy, unaer an appliec traction giving rise tc & uniform siress rate

.0 i o N S . .
6540 the composite instantaneous compliarce Mijk1 (= . ijk1) is given as
=l ™M W =1 r2
Mijk] 'i ¢ N1Jmn mnoo] [“ ¢ Nopkll r=1,2,n (21)
with
.r _ T .0 _
U:lj - B1jk1 Ok], r 1, 2, m (22)
or
T T .m _
835 = Wijin G1p T L2 (23)
where the matrix stress rate is written in terms of the applied siress rate
0
°55 as
Mmoo r,r -1 .0 _
o‘ij- [f' C N_ijk-ll Gk-l, r = l, 2, m (24)
The dilute stress concentration tensors are
.= LY r m =1, 2 5
Wijk1 = Y4jmn Tmnop Mopk1e T = 1. 2. M (25)
Substitution of equation (9) into (14) results in
i - .
Wisk1 = Tijka (28)
For a given composite stress rate B?j, the composite total strain rate
é?j follows from the composite compliance Mijk]’ equation (21). The

micromechanics leading to Mijkl is based on the fact that the composite

total strain rate is equal to the volume average of the phase total strain
rates. As pointed out by Hill (1967), the elastic and inelastic components of

the composite total strain rate are not direci averages of

their microscopic

counterparts when the composite stress rate &.. maintains inelastic Tlow in
ERe

an elasticaliy neterogensous medium. Tne comoesite inelastic strain s

:YFTCa!?y ootainec from ar s=izstic unicasing Racauss Tns unifiszc agusTicn:

€O ncT zilow “or regions of ourely elastiz ceformaTicn ws v zZonsicar oniy




imaginary "instantaneous” elastic unloading. In other words, we assume that
during the infinitessimal period of unloading static recovery has insufficient
time to induce inelastic flow. With this assumption, we associate with each
real state an imaginary elastic state of zero appliec sirece. The comnosite
inelastic st in rate is then given oy

1
.OI M C '.L; .C -\
e = P - P ¢ 2/;
£93 ! iy - ¢ 13k1) R (
Howeve=,  the composite  inelactic eTwai- vzt mAv n: gnTeines  wiTnoUS
C2.Cyi2TinT tne COMZOSITE ComDiante.  Supuet :8EZ nac Ziver Tns IomIIotis
ineizcTic zIirgin as tne volume averagce ¢ Ins Srosusi oF Tne Dness sieses
concentration factors and the phase ineiactic ctrzinc. wWran inejast = <iow

cccurs only in the matrix tne resuls ic simpiy

.01 _ m.m .nl
853 ° ¢ By (28)

Tne proo7 follows from the decomposition o sira‘n ang tne equivaience of
micro and macro virtual power, also known as Hilli's Macronomogensity Equality.

The model accounts only for the particle volume fraction and not the
individual particle size. We make the implicit assumption that the individual
particles ‘'see" 2z statistically homogeneous polycrystalline matrix. SiC
wniskers of 1-2 um diameter, however, are embedded within single grains.,
Walker and Jorcan (1989) have developed unified constitutive egLztions for
single crystals. The inversion of single crystal equations to the total
strain form may be of limited utility, however, dues to the presence of
myltipie corners on & single crystal SCISR. Fortunately, continuous fibers of
150 um diameter mzy be et least ons order of magnituas larger than the
surrounding grains [Kim et ail. (1883)}. Bu: the Mori-Tanake method may have
limited applicability to typical continuous fiber reinforced metal maTrix
composites, which are often no more than eight plies thick. In this case, the
fiber diameter is of the same order of magnitude as the composite thickness.
The rigorous form of the micromechanics may not then reduce 10 the siiple
common Form (ses, for instance, Mori and Tanke (1973), <hs appendix).

The model presented herein provides the mechanical gquation of state for
the comoesite and the growth law for the compposite inelastic s:rain. The
damage state is treated as known. The Mori-Tanaka method has been used [Taye
(1981)} to obtain the strain energy release rates of cracks in elastic
composites. The concept of strain energy release rate is of limited utility
for bodies beyond general yield. Also, proportional macro-loading may resul:
in non-proportional micro-loading. The J integral is therefore noi useful for
calculating microcrack strain energy releasz rates.

The Mori-Tanaka method has also been used |{Taya (1981)] to study duczile
void growth in viscous matals. Ductile void growth is primarily & Tinite
deformation pnenomznon and is of limizec conseguence in Composites. Inaesc,
experimenzz] studies of SiC reinforcec ziuminum comoosites incdicate <ne: no
measurabie increase of Dporosiiy occure in ioadinc <z Tedlurs Fiom anc
freanacic (182G) ),




IIT. RESULTS AND DISCUSSION

A. Composite Hardening Equations
The composite inelastic strain rate can be obtained from a composite

. 0 . . e .
SCISR in o33 space. Hill (1967) nas igentified the constraints on tne
composite yield function in terms of tne constituent yield functions. For the
simple case at hand, overall yielding occurs simultansously witn matiris
yielding. Furthermore, the composite yieid function is smooth and conve... anc

the macrosceonic plastis strain increment - in <ne direcTior of *the outwarc
normal.

Supetitution ©f (22) intl tns matri. SIISE (40 medines tne intiiel SCI
in composiie str=ss space:

1 me 0 .',.me o .' i V4 -
F =3 . .. - = = <

? (813k1°k1) (B1JUVOUV) 3D, =0 (25)

‘ me . 4 . . . ... .
where Bijk] is the eiastic stress concentration tensor. in defining the
initial SCISR we make the usual assumpiisn that the back s:irecsc is inizialiy
zero and the drac stress is of initial valpe D,- The concentration tensor

o . . . ] . . ~ -
BT3k1 Induces a rotation and an anisoiropic expansion of the SCZISR.  The
SCISR (29) it the eguation for an ellipse in the deviatoric plane, and the
initial SCISR may now exhibit pressure dependence. The stress concentration
tensors are defined in terms of stress rates, whereas the SCISR is defined in
space of current stress. A simpie substitution such as (29) will therefore

not enable the determination of subsequent SCISRs.

Dvorak and Bahei-E1-Din (1982) have derived composite kinematic hardening
rules for fiber reinforced kinematically nardeping metais. We use this metgoc
o -

T0 obtain the macroscopic back stress Csze The bDack stress
J

i3

corresponding to a yield function has a different meaning than the Mori-Tanake
back stress aij‘ The Mori-Tanaka back stress is given by the difference of
the applied stress and the resulting matrix siress &s

= _m 0 21

953 = 045 7 O4s (30)
or, using (22),

~ M . 0

55 = Bisa - Tiga) e
The Mori-Tanaka back stress will deveiop under purely elastic loading, whereas
the back stress responsible for .inematic hardening gives the yield funz:tion
Iranslation due only to inelasiic flow.

The location of the SCISR in composite stress space is given by

5
- .B : o , . - : v
The back stress rais €;5 15 obteinec Dby subtracting tne elasTiic responss
e
TYOm Ine ToTEl response.  For insiante, curing z Tims increment €T ws apniv :
: . C s . s - . - - :
loac dci. Foliowec immecietzly oy er insTanteneous. enc Tnerefore siastic,
- v C - . -
“hICECIAC -0c... ZUE TT TnE mETTiy ‘nelasTtic caformazion. Tne mEToiy sImass




will not return to its pre-load-cycle value. The resulting matrix residual
stress increment is

N P | me 0 32
dogs = (Byjy = Byjiy) degy (32
Ti.. composite and matrix SCISR transliarions aque tC the ipad infrement are
related by
BUT . - de”. = Oc? - dr ="
Tnus, The CCmMDOSitE DaCk sIrscs ¢ sser TC g2Denc 2xriiciti: - Ine "mElsri
hardeninc siressc dc?; anc tne “mecnanice" naraening sires: Q.. QUE IC
LS| o
constraint hardening. If the innomogensities are voias, do.. is &
mechanicel softening stress.
The composite back stress increman: is civen py (3I) anc [ZZ3:
B -1 T O [ ey
deyq = (B 1Jk1) [(B1Jk1) 13uv = hu] doyy VoS
The incrementel eguation (34) may be rewritien in rate form as
B .0 =
: . -1 35
(B1Jk1) ° [(513k1) 1Juv kluv] Euv (23)

s is thus seen 0 @epanZ expiiciti:

The evolution of +he composi:a pack stres
on the evolution of ihe matrix back stress &ng tThe appliecd stIress raie.

B. Composite Creen Eouations

During creep or stress hold (strain transient) tests, tThe composits
strass is constant, i.e. 2. = 0, and the composite strain rate cannoi b

3

(D

determined by the comp1iance (21). Also, the phase siress rates cannot be
determined from (22). The composite strain rate must be obtained from an

equation relating e?j directly to the matrix stress rate. To derive such an

equation we begin with the composite stress/elastic strain eguation

.0 ~ -1 .0 .oI .oI (36
€ = + = o]
k1 <°k1uv) “uv T K1 T Y (38)
Substitution of (28) yields
.0 .0 _ _m.m .mi fa=n
< =t =C =z Z L
K1 k1 kKluv uv o
hexT, wz supstituts sguation /LlT7' I ozzTatr
T L 1ot o (- U iz
T ORI TS T T oTdn tun - '




Now decomposing the mairix strain rate and making use of the matrix elastic
compliance,

. JTeT e .m _ .ml, mm .ml
2 e gt Mijop Sop ™ 8530 = ©8hquy By
We solve for the matrix stress rate as

[¥3 ]
[Yal
-

-

e - jgiit e #TE - ooy - Lo ar

¢ = o0 T - MU o S au

jobey W~ Lot ogs tun U
The matrix cirece rate may be written in terms of tne compocite SIvrEin rats
as

.m rov e -1 mm or el -1 .0

c = e T .. c'B s ' 7T 0

op [ 1Jk.] ‘i jop kluv [z c 'uvk]l (c Bstuv) st

r r (41)

Equation (41) gives the matrix stress rate in terms of material hargening
(softening) and constraint hardening (softening). The composite creep
response cortrasts sharply with the creep response cf the in situ matrix.
From (37), (40) and (1.2) it is apperent that constraint hardening precludes
composite steady state creep if the mairix is undergoing steady state creep.
A composite may obtain a steady state only when the sum of void-induced
constraint softening and matrix thermal softening equals the sum of
reinforcement-induced constraint hardening and matrix strain hardening. Under
steady creep conditions, & SCISR is fixed in stress space, j.g. it doss not
transleate, rotate, or expancd (contract). Interestingly, z Tixed mairix SCTISR
will generate & dynamic composite SCISR.

The "fading memory" of neat metal SCISRs has been experimentally verified
by Blass and Findley (1971) and analytically modelled by Robinson (1985).
Fading memory implies that, regardless of mechanical history, a metal will
eventually reach & steady state flow rate unigue to the current fixed strass
state. The concept of & unigue pairing of the stress and steady state
inelastic strain rate is the foundation of Hart's (1970) framework, upon which
Miller's model is predicated. Fortunately, the composite will exhibit fading
memory. Recall that our model assumes a1l inhomogeneities to De separated by
a continuous viscoplastic matrix. Furthermore, stress fieids are uniform in
the inhomogeneities. Therefore, residual stresses in the inhomogeneities must
be balanced by residual stresses in the matrix. The matrix exhibits fading
memory with respect to the deviatoric component of residuzl stress, which will
eventually totally relax through static recovery. £Zquilibrium then demands
total relaxation of the inhomogeneity residual deviatoric stress. Inelastic
incompressibility of the matrix precludes the existence of residual
hydrostatic stress.?

1

We ¢z not consider zhermz? vagigua? givesc,




Recall that the inhomogeneities are aligned in the x5 direction. For
macroscopic axisymmetric loading the initial yield surfaces of SiC (E=430 GPa,
v=0.2) reinforced aluminum (E=63 GPa, v=0.33) composites are shown in
Figures 2 and 3 for 20% and 30% reinforcement volume fraction, respectively.
The a:.::-vmmetric transverse cstresc is given ac

- 1

%y = 3 (oy*ep) (42)
for spherical reinforcement, the yield surfacs is & Cyiinger &aiigned aiong tne
NVGroSTETIC &x1L. For wniskerz anc Tiperz, tnme Cylinges rolEtel TnoLng
cirectior of reinforcement anc it row &n e31iDsE In Ine gevigIseil I EnE.  ine
yielc surfaces correspondinc tc wniskers anc Fiberc oo It differ
substantialiy. The surfaces take the shape of & cyiinger pecause tne matris
is modelled only in terms of an average stress. Dvorak and Banei-I1-Din

(1979) have used the modifieg self-consistent method to obtain yieid surfacec
for fibrous composites with non-hardening matrices. In that case, the yield
surfaces were elliptical in the axisymmetric plane because the modified self-
consistent method allows for two different (put uniform) matrir stress
fields. Therefore, we expect the Mori-Tanake method to predicT an
unrealistically large elastic region for large values of hydrostatic stress.

For macroscopic plane stress, the initiail yield surface of & 50% toron
fiber £=400 GPa, v=0.2) reinforced  aluminum (E=72.5 GPa, v=0.33)
composite is shown in Figure 4. Also shown are the yieid surfaces predicied
by the matrix dominated mode (MDM) and the self-consistent fiber dominated
mode [FDM(SCM)] for the bimodal theory of Dvorak and Bahei-E1-Din (1987). For
B/A1 the bimodal theory has been experimentally showB to predict gxtrem81y
accurate results 7or plane stress loading in the ¢35, - oo and c5, = S35

planes. Apparently, the Mori-Tanaka method underestimates tns yislc sirencin
of fibrous composites. This conclusion is supported by Figure 4 anc &iso
Figures 2 and 3, which indicate little strengthening of the fiber composite
over the whisker composite. For whisker and particulate composites, however,
the Mori-Tanaka method should predict more accurate results than the bimodal
theory.

The rigorous theory of ‘Yeffective modulus® elastic micromechanics
involves the exact solution of a localization boundary value problem taken
over a representative voliume element. The resulting microscopic field
varigbles are then transformed <c +the macroscepic values through e suitabls
homogenization procedure. Usually, the localization probiem must be solvec
using the finite element method. Micromecnanics models were developed to
provide physical insight and predictive capability using approximate methods
of localization and homogenization. In general, these methods involve exact
solutions to elastic boundary value problems formulated over an approximate
representative volume element. For example, the localization problem in the
Mori-Tanaka method 1is the ‘“auxiliary" problem of Eshelby's "eguivalent
inclusion"” solution for a single ellipsoidal inhomogsneity in an infinite

matrix. The @approximate 1localization scheme in the Generalized Sel¥-
Consistent Method [Christensen and Lc (1973)] invoives tne solution 0 &
concentric spnerses or & concentric cylinders prooiem.  Unfortunately, Ine

properties of nistory dependent materizis vary with strain. Ixact soiutions
cannot pe optainec for iocaiization oroplems inveiving insiasticéliy naraenins
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In a vrecent comparison, Christensen (1990) determined that the
Generalized Self Consistent Scheme is qualitatively superior to the Mori-
Tanaka method. It was shown that the Mori-Tanaka method involved no solution
of the basic particle interaction problem in the non-dilute case, and the
method is essentially “an estimate of the solution form guided only by the
requirement cf the Giiute soiution at one end cf tne concentration scaie anc

2z the opposite end of <he sca]e by the reguirsment tnat as ¢, -1, tne
effective proper ty identify wit hat of the inclusion phase. I the dilute
timit 2 L. - 0 tne ‘sri-TanaLc metncc takes tne form of Zgnelby's meincc,
wnizr o= inel2TTisE i) NArQeenIng m3Teviili GOBL noL il er =xEIT SLUTIon
N, SUMMARY

A micromechanics model for tne viscopiastic benavior of & metél matrix
composite has been geveloped. The composite consists of & thermoviscoplastic
matrix reinforced by linear elastic particies. Voids are also included in the

analysic. The micromechanice model has been used %o develop constitutive
equations for the composits. Specifically, sirain narcsning equetions &nc
initial SCISR for the composiis have been obtained. In additiorn, ths

micromechanics model has been used 10 generate eguations describing creep of
the composite.

The micromechanics model presented herein provides & generai iramework
for predicting composite response based on constituent behavior. for exampie,
while Miller's unified thermoviscoplasticity theory was used to describe the
thermomechanical behavior of the matrix in the present study, other
constitutive theories could have been used In the future residual stresses
due to thermal expansion mismatch will bs ir: uded and the englysis extengec
<o predict thermoviscoplastic response ¢7 the composites.
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ADDENDUM

Three papers directly relevant to the present research were presented at
the recent IUTAM Symposium on Inelastic Deformation of Composite Materia‘s.
Pensselaer Polytechnic Institute, Troy, N.V., 28 Mav-! June, 10G0,

The “vanishing fiber diameter model" of Dvorak and Bahei-f£i-Din {
was used by Krempl and Yeh® 1z predict thermal resigual stresses in und
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theory using the Phillips kinematic hardening rule The au*hc*s pu1nted o)
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a numerical algoritnm for the evaluation of Eshelby's tensor corresponding o
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ABSTRACT

The unified viscoplastic constitutive theories of Bodner and

Walker are investigated to determine their predictive capabilities using
experimentally obtained data for Hastelloy X, at 1100 and 1700°FT, as cthe
basis of comparison. Mzterial parameters for these models have been
obtained using an Iterative approach, unlike the traditional explicit
approach. 1Instead, the nonlinear form of the constitutive equations are
numerically integrated using physical incite, as well as knowledge of the

parameters, until acceptsble values are obtained. The iterative method Zor

determining the materizl constants is shown to be &z viabie zlternative.
proving to be much simpler and less time consuming than previously
developed procedures.

Comparisons to experimental data reveal that the constitutive theories
are not able to simultaneously model the initial and fully saturated
condition for z materiazl which has undergone a considerable amount oZf
cyclic hardening, although, a power law based strain rate equation is

shown to model this material system best overall.




INTRODUCTION

Over the last several decades, technological advances in areas such as
gas turbines, rocket engines, solar energy conversion devices, nuclear
reactors, and the like, have forced engineers to reevaluate traditional
methods of structural amalysis. This, in part, is a result of attempting
to make better use of natural resourc:s through improved design anc
fabrication techniques. 1In addition, materials used in the aforementioned
applications are exposed to hostile thermal environments where temperature
and rate dependent phenomena are sinificant. To this end, a number of
unified thermoviscoplastic constitutive theories have been developed which
accurately predict the response of a material subjected to thermal and/or
mechanical loading. However, use of these models is still not commonplace
and additional research is necessary in order to understand their full
potential, as well as their limitations.

The purpose of this research will be to assess the viability of an
iterative approach for material parameters evaluation, as well as to
perform a qualitative and quantitative analysis of the predictive
capabilities of the models proposed by Bodner [1] and Walker [2].
Numerical simulations from selected theories in uniaxial form, and exper-
imental data using Hastelloy X, will provide the basis for the evalua-

tions.

SELECTED CONSTITUTIVE THEORIES
The constitutive theories chosen for this investigation are those of
Bodner [1,3-15] and Walker [2,13,14,16,17]. Selection was based upon

severzl considerations, namely: 1) these models have been scrutinized verw




2) these models have been previously used to model the behavior of
Hastelloy X; 3) parameter evaluation schemes are more readily available

for obtaining "initizl" estimates to the matcriazl constants; and &)
continued development of these models requires a thorough understanding of-
their full potential, as well as their limirations. Thus, in the
paragraphs that follow, a briei overview of these theor_es is presentecd
which will include a discussion of their forms and general

characteristics. However, the complete derivation of the equations will
not be reviewed herein since this information has appearecd on numerous
occasions in the literature.

Bodner Model

Bodner's model [l is a unified viscoplastic theory which does not
require the use of a yield criterion. The constitutive equations are cast
in a continuum mechanics format and make use of many microphysical consid-
erations based cn the concepts of dislocztion dynamics. The form of the
model presented herein is capable of characterizing behavior such as iso-
tropic and directional hardening, thermal recovery, and general tempera-
ture dependence of plastic flow [14]. The model has two internal state
variables: an isotropic hardening parameter, and a kinematic hardening
parameter. Bodner makes use of the plastic work rate (aél) as a
scalar measure of hardening, which enables more accurate modeling of a
strain rate jump test [l]. The uniaxial differential form of this con-

stitutive theory is presented below as [1]:

y—
~o

el = 2 Dy exp(-O.S[(DpB)/a]zn) sgn(o) (
J3




| B = my (Z3sgn(o) - B)oel - Ay2; (Inl/zl)rz sgn(B) (2)
r]
D =m (27 - D)oel - A12; (|D-25]/27) (3)
wnhere: DpB =L + Bsgne , and (45
my = My/2 (1 + exp{-m3B sgn(o)}) . (3)

In equations (1)-(5) the variables Dy, n, my, Z7, 29, Ay, Trp, W, 23,
Ap, m3, and r) represent material parameters which can be obtained through
a series of uniaxial isothermal constitutive experiments.

An exponential function is used as the form of the basic equation for
the inelastie strain rate, eq. (1). This function yields &z very small
value at low stress levels and provides a limiting value of inelastic
strain rate in shear (Dg). These properties appear to be particularly
useful for predicting material behavior at a variety of strain rates.

This flow law contains a scalar coefficient (DpB) which is a function of
both the isotropic (D) and directional hardening (B) variables.

The growth laws, eq.’'s (2) and (3), for the theory are in the standard
Bailey-Orowan format of competing hardening and recovery terms. Cyclic
hardening/softening characteristics are represented through the isotropic
evolution equation (3). Hardening and/or softening is included in this
growth law by the term mlzl(aéI). Hardening is modeled when Z; is
greater than the initial value of D, whereas softening is modeled when Z:
of D. The zerz -miDici-- acsounts
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for the  dynamic-recovery, while the term -Alzl[(D-Zz)Zl’I]rl represents
the static thermal recovery.

Bodner’s model does not make use of the back stress concept to include
directional hardening effects; instead, an anisotropic form of the flow
law is used. This flow law is assumed to behave isotropically on an
incremental basis. This growth law, eq. (2), includes nardening through
the term m223sgna(aé1). In the evolution equation for directional
hardening, the term -sz(aéI) is the dynamic recovery term, and
-A2Z1[(|B|/Z21)T2sgnB is the static thermal recovery term. Cross softening
effects are avoided by using the stress as the directional index of har-
dening.

Walker Model

Walker’s model [2], is a unified viscoplastic constitutive theory
which is based upon a nonlinear modification of a three parameter solid
containing a Voigt element in series with a spring. However, during the
development of this theory, Walker included many microphysical
considerations. The form of Walker’'s theory used herein is seen to be
capable of modeling isotropic and directional hardening, and includes one
internal state .ariable, the back stress. The growth law for the back
stress is of the standard Bailey-Orowan format. The scalar measure of
hardening used by Walker is seen to be the inelastic strain rate. The

uniaxial differential form of Walker's model is given below [2]:

el = |

g _- D

DnBl"'1 (c - B) (6)

lo-

T ‘R N oA
= (N~ 4+ Ne)e~ - (B - Bp - nae) G




D = D; - Dy exp{-njyR) (8)
vhere: G - (n3 + ny exp(-nsR))léII + n5|B|m'1 , and (9)
R - Jel at . (10)

In equations (6)-(10), the variables Dy, Dy, E, nj, ny, n3, ng4, ns,
ng, ny, n, m, and By represent material parameters, which can be obtained
through a set of isothermal uniaxial constitutive experiments. It shoulé
be noted that Walker’'s constants are temperature dependant.

The form of the basic equation for the inelastic strain racte, eg. (6),
is 2 power law function which accurately predicts material behavior such
as creep, relaxation and strain rate effects for strain rates below 10-2
sec™l. However, at higher strain rates the power law expression appears
to predict stress levels which are much larger than those actually meas-
ured during & constant strain rate tensile test [18,19]. Walker has
also proposed an exponential form of the flow law [2].

The drag stress models isotropic hardening and accounts for cyclic
hardening/softening of the material. The equation for the drag stress
(D), eq. (8), is assumed to be a function only of the accumulated
effective inelastic strain (R). Initially the drag stress is Di-Dj, which
eventually saturates to a value of D as the inelastic strain increases.
The hardening in this evolution equation is given by the term Djexp{-nyR}.

No recovery, dynamic or static, has been included in the drag stress

growth law.




Nonlinear kinematic hardening and the Bauschinger effect are repre-
sented by the back stress. The growth law for the back stress, eq. (7),
includes hardening via the term nzéI. Dynamic recovery is modelled
by the term B{nj+njexp{-nsR}, and the term Bng models the back stress

static thermal recovery.

EXPERIMENTAL PROGRAM

This section details the experimental program used for developing
isothermal uniaxial constitutive data for Hastelloy X. Data were obtained
for temperatures of 1100 and 1700°F using four different mechanical
testing modes. These include monotonic tensionm, fully reversed cyclic
stress drop, and complex history experiments. In the following paragraphs
both the procedures and apparatus used to conduct these experiments are
presented,

Experimental Procedures

All of the tests performed during this program were carried out in the
Solid Mechanics Laboratory of the Aerospace Engineering Department at
Texas A&M University using an MTS 880 servo-hydraulic closed-loop testing
machine. The load frame was configured with a closed-loop heating cham-
ber, water-cooled hydraulic grips, an externally mounted load cell, an
axial extensometer, and a mini computer for controlling testing oper-
ations. The heating chamber had a maximum operating range of 180°F and
was of the three zone, resistive heating, clam shell type design. Tempera-
ture feedback for each longitudinal set of heating coils was provided by
24/28 gauge K-type bead welded thermocouple wire. The temperature at the
center of each zone was monitored by its own process and power controller

anc enzbiaé =h
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temperature profile (within ASTM specifications for a short term test)
along the gauge leﬁgth of the specimen. A set of Fiberfrax® insulating
plugs placed on the top and bottom access ports of the furnace and grips
which extended into the hot zone were used to reduce and/or minimize the

effect of convective and conductive heat losses, respectively.

or tnis series

(BN}

A high temperature specimen grip system was utilized
of experiments and, as stated above, extended into the main body of the
furnace. The grips were designed to accept threaded type specimens
through the use of an inside/outside threaded adapter. Backlazsh in the
specimen/z2apter assembly was removed via a hydraulically cperated piston
which could be loaded to a specified amount. Grip alignment was performed
prior to and during testing (failure of one of the specimen adapters
necessitated a realignment during the course of the experimental program).
This included a check of both concentrieity and angularity of the load
train with respect to the actuator rod movemen:t. The zlignment procedure
yielded a total indicated run-out of 0.0008" at an angle of 0.022°, as
measured by a digital dial indicator accurate to 0.00005". However, since
the adapter assembly contained a number of threaded components, it was not
reasonable to expect any degree of repeatability of these measured quanti-
ties, however; they are stated for the sake of completeness. It should
also be noted that there was no explicit measurement of specimen bending
strains to ensure compliance with ASTM specifications.

The primary measured data of interest included load, displacement, and
temperature. The load data were obtained via a 10 KIP load cell mounted
in the load train. Displacement data were measured using z one inch zauge

length, air cooled, axial extensomenter. The extensometer was mounced
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to make contact:with—the specimen. Signal conditioning for both of these
transducers was part of the MIS 880 load frame system and possessed a mul-
tiple range select feature which provided maximum data resolution. Load
and displacement data were measured using a 12 bit A/D system which had a
*5 mV resolution and was an integral part of the controlling and measuring
computer system. Temperature data were obtained using three 24/28 gauge K
type thermocouples equally spaced along the gauge length of the specimen.
The theromocouples were comnected to a multi-channel digital thermome:er
which was not an integral part of the A/L measuring system. Therefore,
tempexzture data were not automatically recorded on a regular basis, as
were the load and displacement measurements. Instead, temperature values
at the beginning of a test were entered by hand into the data acquisition
program and simply monitored thereafter. The thermocouples were attached
to the specimen using the self-supporting method. This method of attach-
ment provided sufficient thermal contact with the material to yield
accurate temperature measurements and did not flaw the specimen (which in
general can result in premature failure), as is common with welding ther-
mocouples to the surface.

The Hastelloy X material used to fabricate the specimens was purchased
in bar stock form (heat ID 2G6782) from Atek Metals Center of Houston
Texas. This was a solution strengthened material conforming to ASM speci-
fication number 5754H. The design of the specimen was that of a standard,
constant gauge section, low cycle fatigue geometry having a nominal one
inch gauge length and quarter inch diameter circular cross-section. The
specimens were fabricated to meet ASTM E606-77T specifications except for

the surface finish and post machining heat treatmenz. & 32u finish was

(9]
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specimens were used in an "as received" condition with no additional heat
treatment to remove microstructural damage resulting from the machining
process.

A total of 27 tests were conducted in fulfillment of this isothermal
constitutive test program. Two cyclic tests were carried out at 1200 and
1600°F, respectively, and served as a basis of comparison ToO previously
obtained data and for uniaxial consritutive code verification. Specific
details of the remaining 25 experiments are as follows. Monotonic tension
and fully reversed cyclic tests were performed at 1100 and 1700°F, using a
variety of strain rates, ranging from 1x10°2 o 2x10°3 sec™l, under strain
controlled conditions. Strain amplitudes for the temnsion and cyclic test
were 4.0% and 0.8%, respectively. However, the strain amplitude of 0.8%
was subsequently reduced to 0.4% during the course of the 1100°F exper-
iments because specimen buckling became a problem. This was apparently
the result of a material instability at the selected temperature and
strain rate.

The fully reversed cyclic experiments were carried out until a satu-
rated condition was achieved. For the purpose of this test program,
cyclic saturation was defined as a change in stress amplitude of less than
100 psi, from one cycle to the next. The stress drop tests, used to mea-
sure values of back stress, were performed by inserting a hold time on the
unloading branch of a fully reversed saturated hysteresis loop, and moni-
toring the creep response. When positive creep was observed, the hold
stress was greater than the back stress and vice versa, when negative
creep was seen., Since it is very difficult to obtain the exact hold
stress wnich results in no creep, the general procedure was to bracket the

cosizive znf negative creep responsss ané use & linear regression schem
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to e;timate the values of the back stress. Additional stress drops were

made ;n a specimen after it had been recycled to saturated condition.
Finally, two experiments, one each at 1100 and 1700°F, were performed

in order to verify the predictive capabilities of the constitutive models

considered herein. These complex history tests included mechanical

holds. A listing of each segment defining these experiments can be founc
in Table 1. 1In conclurion, a complete summary of the entire test matrix

can be found in Table 2.

Based upon an inspection of the experimental data presented in Figs.
1-4, the following general observations can be made regarding the behavior
of Hastelloy X at 1100 and 1700°F. For the range of temperatures tested,
the material exhibits a positive strain rate sensitivity, that is, stress
amplitude increases with an increase in strain rate (see Figs. 1 and 3).
However, Fig. 1 also shows that there is an inversion of the rate
sensitivity between a strain rate of 10-% and 10°3 sec-l, which would
indicate that strain aging effects are present at 1100°F (Strain aging is
a thermally activated solute effect which generally changes the rate sen-
sitivity of a material). Tnis phenomenon is further demonstrated in Fig.
2 and appears to be more pronounced once the material undergoes cyclic
deformation. While no explanation for this type of behavior can be made,
other researchers [2] ﬁave reported that the rate sensitivity changes
from negative to positive between 1000 and 1200°F. Therefore, one can
conclude that the material is undergoing a significant microstructural
change in this temperature range which may result in the strain aging

affect observed herein.
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The fully-reversed hysteresis loop data, shown in Figs. 2 and 4,
indicate that Hastelloy X undergoes cyclic hardening up through 1600°F and
cyclic softening thereafter. The amount of hardening and/or softening, as
indicated by the difference between peak stress levels at initial loading
and cyclic saturation, appears to be a function of both temperature and
strain rate and, in general. increases with strzin rate, but decreases
with temperature. This type of material response is again typical cf that
reported by other researches [2]. In addition, the saturated cyclic data
can also be used to make one other observation regarding symmetry of the
data in tension and compression. A Bauschinger-like rffect was noted
during testing, which resulted in an asymmetric cyclic response with
respect to the strain axis as the material was going through its initial
cycling. However, no specific trends were observed regarding this
asymmetry as a function of strain rate or temperature. In addition, as a
saturated condition was achieved, the materizl generally exhibited little’
or no asymmetric characteristics. This is contrary to what has been
previously reported in the literature [2], wherein Hastelloy X is shown
to have a higher stress amplitude in compression than in temsion. It is
believed however, that this discrepancy is simply a result of how long
the material was cycled and therefore does not represent a significant

constitutive behavior variation.

MATERTAL PARAMETER EVALUATION

Evaluation of the material parameters for the unified constitutive
theories represents one of the most difficult aspects of their
implementation. These difficul:ties generzlly stem Zrom the fact that &
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constant';annot‘alwaysfbe achieved as well in the laboratory. Thus,
without accurate constants, characterizing material behavior, even with
the best of models is not possible. To this end, one can take several
approaches: 1) make use of least squares optimization techniques and

neglect the real physical aspects of the theory; 2) simplify or recast

[R Y

the original constitutive equations, through a series of judicious
assumptions, so that the different phenomena being modelled can be
inuividually examined; and 3) numerically integrate the nonlinear form oI
the theories directly, using physical incite, as well as lmowledge cf the
equations in an iterative approach, incrementing the paramerers unzil
acceptable values are determined. The first approach mentioned above may
provide constants which adequately predict material behavior within the
limits of the data base used to generate them. However, there is no
guarantee that under more complex conditions accurate results will be
obtained. The second approach, on the other hand, represents the present
and more traditional form of determining tiie materizl parameters.
However, obtaining unique values of the constants directly from a
discretization and linearization of the constitutive equations generally
requires additional data manipulation in order to accurately characterize
a given material response [20]. Therefore, presented below is the third
method, which is a simpler and much less time consuming iterative style
procedure for determining the material parameters.

The iterative method described herein attempts to provide the reader
with physical incite about the various parameters used in both the
Bodner and Walker theories, so that final forms of the constants can be
obtained directly by this method. The procedure requires the user =o

assume some initizl estimactecs of the constants. based ugon & dnowiedgs

o~
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the material and model behavior, in order to begin the process.
Computer Iterations

A detailed explanation of the order of determination of parameters,
experimental data requirements, and a description of the constants for
each model will be presented later. However, some general observations
can be made vhich are appliczble to other models as well. The order in
which the material parameters are evaluated is an important factor in
determining the ease and speed at which these constants are obtained. The
hardening parameters were determined first, anc the recovery constants
determined last, with the order within these categories being determined
by the amount of influence each constant had. The constants with the most
effect were determined first. Experimental data requirements were both
high and low strain rate tests. The hardening constants required the use
of the experimental results from high strain rate tests. These tests were
used based on the assumption that at high strain rates the thermal
recovery is negligible. The recovery constants were evaluated using slow
strain rate tests based on the same previously mentioned assumption.

The first step in the evaluation of the material parameters was to
study experimental data in order to determine points on the curve at which
it was desired for the model to predict most accurately. In this case,
the points most generally used were a point directly following yield, a
point in the middle of the plastic behavior, and the maximum and minimum
strain amplitudes. The general shape and cyclic hardening or softening
characteristics were also observed, as well as strain rate sensitivity,
and thermal recovery behavior. Studying the experimental data and becom-
ing familier with it was found to be very important for decermining the

constants most expeditiousiv. The informzzion cbizined Zrox ths zbovs

!
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observations was used to develop a physical feel for each of the constants
and their influence on the model.

All of the constants for these models, except the elastic modulus, E,
were obtained starting with provisional values and using an iterative

procedure. The iterative procedure began by first assigning a value of

zero to all of the constants except for the exponents. Initizl wvalues fov
the exponents were selected so as to avoid any numerical overflow condi-
tions. The iteration proceeded by assuming a provisional value of one
constant, and adjusting that constant until satisfactory results were
obtained. Satisfactory results in this case implies thaz a desired stress
amplitude for a given strain point was achieved using the constants
invoked at that time. Next, another constant was given a value and
subsequently adjusted. Each time another constant was enabled or a
different experiment was used, all provisional values of constants were
updated. Iteration proceeded in this manner until all applicable con-
stants were evaluated and the experimental datz was satisfactorily pre-
dicted for the required tests. It should be noted that when iterating
between a fast and a slow strain rate test, care should be taken not to
update the hardening constants too much. It was found that
"over-updating" these constants caused problems when switching between
these tests, which resulted in performing unnecessary iterations.

Bodner Model: The iterative procedure for this model began by evalu-

ating the isotropic hardening constants. 2, was the first parameter of

interest and represents the initial valve of the isotropic hardening wvari-
able. This constant is seen to affect the yield point location. transle
ing It up or down the stress axis as shown in Fig. 3z. In acddizion. this

Davamezter Im comniuncIicn wizh - dezermines whethsr swollc novazninos
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(20<Z;) or softening (Zp>Z1) will be modeled. The strain rate exponent,
n, was determined next. This constant appears to be related to the velo-
city of dislocations in the crystalline lattice {1] and as a result, is
highly temperature dependent. In general, this constant is determined
using rapid strain rate data, where thermal recovery eifects are not
present. Tnis parameter physically shows the dependence ¢ the Iiow stresc
with strain rate and affects the predicted stress-strain response as shown
in Fig. 5b, noting that the yield point does not change, but rather the
rate at which a saturated value of the flow stress is attained. The
liriting or maximum value of the isotropic hardening wariable, Z;, is used
to raise or lower the stress amplitudes during cyclic hardening and
softening, respectively, and was set next. Figure 53c shows the effect of
changing Zj for a given value of Zy. The last of the isotropic hardening
constants, mj, was then determined. This parameter is seen to affect the
rate at which D reaches a saturated condition. In general, once the
inelastic strain becomes significant, increasing the value oI m; makes
do/de larger and vice versa, as shown in Fig. 6a. Some summary
observations regarding these three hardening constants are that the
difference between Zpy and Zj, in conjunction with m;, sets the rate and
amount of cyciic hardening/softening. However, Zp alone determines the
initial yield point, whereas Z] sets an upper limit on the predicted
stress levels. The constant mj, on the other hand, the rate at which
these conditions are met.

Values of the directional hardening evolution equation were determined
next. The limiting value of the directional hardening, Z:, was Zound

Zirst using & provisional value of m,. The purpose of this hardening term
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introduce a more nonlinear stress-strain response. 23, coupled with mp
and m3, the directional hardening rate coefficient and shape factor con-
stants, respectively, tend to add more shape to the predicted behavior,
reducing the typical "oversquare" problem associated with many other mod-
els (see Fig. 6b).

The thermal recovery constants were th: 1aST parameters O be deter-
mined. As a general rule, the value of Z;, which represents the fully
recovered value of isotropic hardening, is simply set to that of Zp as was

the case during this iterative procedure. The value of A;, the recovery

coefficient for isotrecpic hardening, was then determined using a provi-
sional value of rj. This constant is seen to be most effective once B is
of sufficient strength; that is, once a significant amount of plastic
deformation has occurred. Adjusting the value of Aj should be performed
with slow strain rate test data when recovery mechanisms are generally
active. Figure 6c depicts the effect of varying 4;, noting that this
constant has little influence at the low inelastic strain levels. However,
under cyclic conditions this parameter will reduce the overall stress
amplitudes appreciably as its value is increased. The recovery coeffi-
cient rj was then found. Figure 6d shows the effect of increasing rj for
a given value of Aj] and basically indicates that increasing the value of
this coefficient enhances the rate of application of recovery (i.e.,
active at lower plastic strain values). Chan [13] reports that for most
metallic materials, the value of r] can be set to a number between 2 and
3. Lastly, the directional hardening recovery parameters are, in general,

set egual to the respective isotropic constants.

Walker's Model: Firstc. the hardening parameters were investigatec.
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hardening. =~ Adjustment of this constant results in-changing-the height of
the stress-strain curve. Increasing Dj raises the stress level, whereas
decreasing the values lowers the stress response. Next, the strain rate
sensitivity parameter, n, was put into play. The effect of adjusting the
value of n on the stress-strain response shown in Fig. 7a. This value was
adjusted based on experimental observations of the strzin rate
sensitivity. Next, the back stress or kinematic hardening parameters, nj
and njy, were enabled. The combination ny+n, was found to determine the
shape of the curve as shown in Fig. 7b. The value of ny adjusts the slope
of the stress-strair curve after yield. For this material, nj had
negligible effect and was therefore disabled. Figure 8 shows the effect
of ny on the curve. Since the material behavior studied was governed by
hardening effects for the most part, np was found to be very important in
the prediction of this material response.

Next, the values for the recovery constants were obtained. First, the
parameter Bp was initialized, which accounts for the difference between
tensile and compressive creep. The effects of adjusting this parameter are
shown in Fig. 9. The exponent on the back stress thermal recovery term,
m, was then evaluated. The results of manipulating this constant are shown
in Fig. 10. The back stress recovery constant, nj was then investigated.
This constant was seen to be responsible for the Bauschinger effect.
Adjusting n3 effected the asymmetry of the stress strain response, as
shown in Fig. 11. Observation of the experimental data showed that the
data exhibited no Bauschinger effect. Therefore, this parameter was not

enabled. Next, the constants D, and n;, were simultaneously evaluated.

4]

These constants allow the model to predic: isotropic cvelic harden-
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saturated stress level and the opposite trend results when D; is
decrcased._Ihe constant ny simply appears to magnify the stated trends of
Dy. This trend is shown in Fig. 12. From the investigation of experimental
data it was observed that enabling these constants did not produce
accurate predictions of cyclic response. It was therefore concludec tha:
these constants have little effec:t on the response Zor this material. and
they were subsequently disabled. The ability of this model to predic:
cyclic hardening and softening will be addressed later.

Next, the parameters r, and ng were investigated. These parameters
account for dynamic recovery of the back stress. Fig. 13z shows the
effect that n; has on the stress-strain response with the value of ng
serving as a magnifier of this term. In thic figure it can be seen that
the material exhibits tri-linear behavior when n, is decreased. This
behavior can be explained by the fact that decreasing the value of n4
results in a decrease in ﬁhe amount of dynamic recovery, thus leaving only
static thermal recovery. The first linear portion of the curve is the
elastic loading region. The second linear portion of the curve comes about
because thermal recovery is small at the onset of inelastic behavior and
thus, the back stress grows linearly with strain. The final portion of the

rilinear curve results when the back stress becomes large enough to

ct

activate thermal recovery. The thermal recovery term increases until it
balances out the linear hardening term. However, because this material
exhibited little recovery, these constants were found to be unnecessary,
and were subsequently disabled. Finally, the constant ng was evaluated,
which accounts for thermal recovery of back stress hardening. The effect
of varying ng is shown in Fig. 13b. This constan:t was founcd o be

unnecessery Decause the material showed onlv z smzll amount o
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- recovery, and-it-was:set to-zero. The material parameters for both the

Bodner and Walker models were obtained for Hastelloy X at 1100 and 1700°F,
using the computer iteration scheme. Provisional values of the constants
were established using a knowledge of the material behavior and model

characteristics as a guideline. Final values of the parameters can be

seen in Tables 3 and 4. 1In the following seczion. the abilitv o these

®

models/constants to predict the behavior of Hastelloy X under more complex

conditions will be investigated.

RESULTS

This section provides results, which show the response and predictive
capabilities of Bodner’s and Wallier's theory for Hastelloy X. Experimen-
tal data, as well as material parameters obtained by the iterative
procedure described herein for temperatures of 1100 and 1700°F, are used
as the basis of comparison.

Figure 14 presents the response of both models at 1100°F in comparison
to the experimental data. Bodner’s theory models the behavior of Hastellcy
at 1100°F fairly well. However, significant discrepancy can be found in
the estimation of the sharpness and height of the initial yield point. The
smootnness of the response characterized by Bodner's model is governed by
the kinematic hardening variable term in eq (2). Fer this application, it
was found that the parameter m3 helps to smooth the response as its value
is increased. However, referring to eq. (5), it can be seen that this
constant will result in numerical difficulties if increased too much,
Thus, it was concluded that the sharpness of this response is due to the
fact that m3 could not be raised to a large enough valus. The cause oI

underestimation ¢l the wield peint canm De sszen oo elamining Dodner o e
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lution law for isotropic hardening, eq. (3). The constant Zp, the initial
value of the isotropic hardening parameter, sets the value of the initial
yield point. However, the value of Zj must also be low enough for the
term (Z] - D) to account for cyclic hardening. Therefore, a compromise
was reached that allowed for characterization of both responses. Other
researchers also experienced simiiar problems when wcrking with this
material [21].

Walker's model generally overestimated the stress levels for the first
quarter cycle by as much as 50 percent (¢ = 1.19E-03 sec™1). This
overestimation can be explained by the fact that Hastelloy X cycliczlly
hardens at 1100°F. Walker’'s model was unable to accurately predict cyclic
hardening/softening effects, primarily because the constants Dy, and ny,
which govern this behavior, were found to be ineffective for the case
studied. Disabling these parameters causes the evolution law for the drag
stress, eq. (7), to be a constant. Therefore, the stress response was
forced to be near the cyclically saturated stress level. Walker zlso
found that his model did not accurately characterize monotonic tension
behavior of this material at other temperatures [2].

Figures 15 shows a comparison of the initial response of both models
to experiments at 1700° F. For this case, Bodner’s model is seen to
underestimate the stress response for the high strain rate test, and
overestimate for the slow strain rate test, with the yield point staying
approximately the same. This response is explained by observing that a
fairly rigid upward shift of the experimental curve occurs with increasing
strain rate. Recall that the parameter, Zp, is set at a value which allovs

both the vield point and cvclic hardening/softening characteriszics o be

i &,. In adcéirion. the constanI. ©«.. wnich azcounzts Zor

modelied {See
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strain-rate sensitivity, does not respond to changes in strain rate by
rigidly shifting the entire curve. Thus, once the parameter Zp is set,
attempts at modelling the peak stress amplitude result in changing the
rate at which the flow stress saturates.

Walker's model characterizes the first quarter cvcle at 1700°F well.

t can be seen that Hastellov X cvclically sofrens onlr slightly zt 1700°

(]

F, and therefore, the initial stress level is near the final saturated
stress value. Thus, the model does not have to capture a large cyclic
softening response. This thecry models the material behavior at high
strain rates (Fig. 15) even more accurately because the assumption is made
that at high strain rates thermal recovery is negligible. With n. thermal
recovery, even less softening occurs, and the initial value is almost
exactly the same as the saturated stress level. As the strain rate is
decreased, thermal recovery is initiated, causing more softening.
Therefore, Walker's model begins to overestimate slightly with decreasing
strain rate.

The cyclic response at 1100°F is shown in Fig. 16. As was previously
discussed in the experimental section, this material was shown to display
the strain aging phenomenon at this temperature (See Fig. 2). Therefore,
it should first be noted that the forms of both models used in this study
did not incorporate strain aging correction terms, and thus, the strain
aging effects are not accurately captured. In general, the peak saturated
hysteresis values for high and low strain rate tests were accurately mod-
2lled. However, for intermediate cases, the stress levels were overesti-
mated. This response is presumably the result of the stra;n aging phe-
nomencn, &as shown in Fig. 2. However, it can be seen that even with the

strzin aging eifects, Bodner’'c theorv ig ceapablie of modeling the zensrzl
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shape, the yield point, and saturated stress levels for this application.

On the other hand, Walker’s model demonstrates some difficulty in mod-
elling the general form of the curve for the slow strain rate test, and
presents an "oversquare" response. In order to explain the inability to
model the form, it should be noted that the curve changer considerably
from hignh tc low strain rate tests. For the form of Walker's model usec
herein, only one parameter, ny, is available to govern this type of shape
change (See Figure 8). Thus, modeling two curves which are very different
in form is difficult. "Oversquareness" of the response is typical of
Walker’'s model at slow strain rates, as was demonstrated by Walker [2].

Figure 17 presents the cyclic response cf both models, in comparison
with measured values, at 1700°F. For this case it is seen that Walker's
model accurately characterizes the material behavior. Bodner'’s model
predicts well also, but has a few discrepancies resulting from the same
problems as were discussed for the initial load up case. Specificzlly,
Bodner's model overestimates at the slow strain rate anc underestimates a:
the high strain rate.

Figures 18 and 19 demonstrate the predictive capabilities of the
models compared to complex history tests performed on Hastelloy X at
1700°F. Experimental results were compared to Bodner's theory at 1700°F,
as seen in Fig. 18. This figure shows that Bodner's model predicts an
extremely "oversquare" response. This response is not in keeping with the
observations made previously in this study, where Bodner's theory
accurately represented the general shape of the stress-strain curve. Also,
this model demonstrates insensitivity to ~elaxation and strain rate jumps.
Tris response is contrary to information given bv Bodmer "1 . where %
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enables the model to better predict strain rate jump behavior. This
inconsistency is possibly due to the fact that the hardening terms in the
evclution equations, eq. (2) and eq. (3), saturate too guickly.

Figure 19 presents a comparison of Walker's theory to measured values
at 1700°F. Walker's model predicts the overall response accurateli-,
including general shape, strain jumps. and relaxation. This outcome :s

congruent with previous results.

CONCLUSIONS
The purpose of this research was to perform an analysis of the abilizw

-,
. ac

[

of the Bodner and Walker theories to model the behavior of Hastelloy
1100 and 1700°F using experimentally obtained data as z basis. The
constitutive behavior of the material was characterized using material
parameters determined by a simple iterative approach described previously.
This iterative approach appears to be a viasble alternztive to the more
traditional evaluation methods used by other researchers. In addition,
listed below are some other pertinent conclusions:

1) The main objective of the experimental program was to obtain
uniaxial test data for Hastelloy X at 1100 and 1700°F and it is believed
that this has been achieved. However, at these temperatures significant
microstructural changes in the material are taking place. Since the form
of the constitutive theories considered herein cannot accurately predict
the type of transient phenomena observed, evaluation of the material
parameters wac made more difficult. 1In retrospect therefore, utilizing
the models considered herein at these temperatures is not advisable.

2) Both models fail to accurately characterize the imizisl guarter

cvcle ¢I & hvsteresis loot. wWhen the material sxnitizs zignificar
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hardening/softening effects. Bodner’s theory demonstrated more capability
to model the growth of isotropic hardening than ¢id Walker’s theory.
However, Bodner'’s model was generally unable to capture the yield pecint
properly.

3) Both models provided a good representation of peak stress
amplitudes of the fully reversed cyvclic experiments at 1100 and 1700°F
However, at 1100°F Walker's model gave an "oversquare" response. This was
attributed to the fact that strain aging effects were present which
significantly altered the stress-strain response as a functicn of strain
rate.

4) From the complex history experiments at 1700°F, it is seen that
Walker’'s model accurately predicts the stress-strain response for cyclic,
strain jumps, and relaxation behavior. Bodner's model on the other hand,

does not provide an adequate simulation, even though the theory was

reported to be capable of handling these types of conditions.
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Table 1.

Complex History Test Information.

Change in Change in !

Strain_Rate Strain Strain Time Time :

(sec'l) (%) (%) (sec) (sec) .

1.90738E-05 c.2 C.z 104,856 104.85¢ |
1.99795E-04 0.2 0.1 109.860 5.030
1.99984E-03 0.4 0.1 110.360 0.500
0.00000E-00 0.4 0.0 301.010 109.647
1.90728E-06 0.€ 0.2 1349.370 1048.560C
1.85969E-05 0.3 -0.3 1510.890 161.317
0.00000E-00 0.3 0.0 1859.410 348.520
1.85969E-05 0.0 -0.3 2020.72C 161.317
1.99989E-03 -0.2 -0.2 2021.720 1.000
1.98367E-04 -0.6 -0.4 2041.890 20.16€5
1.98367E-04 -0.2 0.4 2062.050 20.165
0.00000E-00 -0.2 0.0 2761.090 699.040
1.99798E-03 0.3 0.5 27€3.590 2.502
1.99798E-04 0.4 0.1 2768.600 5.003
1.90738E-05 0.6 0.2 2873.450 104.856
1.71664E-03 -0.6 -1.2 3572.490 699.040
5.72213E-04 0.6 1.2 5669.610 2097.120
5.72213E-04 -0.6 -1.2 7766.730 2097.120
5.77213E-04 0.6 1.2 9863.850 2097.120
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Table 2. Test Matrix.
Strain Strain Type of
Test Specimen | Temp. Rate Amp. Test
(F) (sech (%)
I :
A ! 4 1100 1,1921E-05 2.¢ _ Monotoniz
f .+ Tencion
5 5 100 1.1921E-05 0.8 Cvelic
6 6 1700 1.1921E-05 0.8 Cyclic
7 7 1700 1.2207E-04 0.¢ Cyclic
8 8 1700 1.1903E-03 3.8 Cyclic
9 9 1700 5.0362E-04 0.8 Stress
Hold
10 = 10 0.6 Monotonic
Tension
11 11 1700 1.1903E-03 4.0 Monotonic
Tension
12 12 1700 5.8148E-03 0.8 Cyclic
13 * 13 1100 3.8148E-03 0.8 Cyclic
14 14 1100 1.2207E-04 0.8 Cyclic
15 = 15 1100 1.1903E-03 0.8 Cyvclic
16 16 1100 1.1903E-03 4.0 Monotonic
Tension
17 17
18 * 18 1100 1.1903E-03 0.8 Cvclic
19 10
20 20
21 21 1100 5.3047E-05 0.8 Stress
Hold
22 * 22 * 1100 5.0362E-04 0.8 Cyclic
23 23 1100 5.0355E-04 0.6 Stress
Hold
24 24 1100 1.1902E-03 6.4 tress
Hold
25 25
26 26
27 @ 27 1100 0.6 Complex
History
28 @ 28 1700 0.6 Complex
History




Table 3. Material Parameters for Bodner'’s
Model at 1100°F and 1700°F.

Parameter 1100°F 1700°F

Ay, sec™t 0.6500E-04 0.6500E- "4
Ay, sec™l 0.6500E-04 0.6500E-04
Dy, sec™t 0.1000E+05 0.1000E+05
E, psi 0.2394E-08 0.1900D+08
] 0.9800E-00 0.9800E-00
r) 0.9800E-00 0.9800E-00
mp, psil 0.5500E-03 0.5500E-03
my, psi~l 0.1100E-01 0.1100E-02
my, psi-l 0.3477E-04 0.3477E-03
n 0.1000E+01 0.7000E-00
Zg, psi 0.1000E+06 0.2500E+06
Z1, psi 0.2900E+06 0.2200E+06
Zp, psi 0.1000E+06 0.2500E+06
Z3, psi 0.1300E+06 0.8200E+05




Table 4. Material Parameters for Walker’s
Model at 1100°F and 1700°F.

Parameter 1100°F 1700°F

D, psi 0.8580E+05 G.1080E+06
Dy, psi 0.0000E-00 0.0000E-00
E, psi 0.2394E+08 0.1900E+08
ny, psi 0.0000E-00 0.0000E-09
ny, psi 0.4200E+07 0.2500E+05
n3 0.0000E-00 0.0000E-00
n, 0.000CE-00 0.0000E-00
ns 0.0000E-00 0.0000E-00
ng, psi{l M gec-1 0.0000E-00 0.0000E-00
ny, sec 0.0000E-00 0.0000E-00
n 0.1420E+02 0.5000E+01
m 0.1160E+01 0.1160E+01
By, psi -0.2000E+04 -0.1000E+04
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ABSTRACT

Coupling between mechanical and thermodynamic processes can be
significant in solid media when material inelasticity occurs. Significant
mechanical energy may be converted to heat via hysteretic loss, and this
coupling may be significant even under gquasi-static conditions. Important
advances have been made since the second world war in modelling this
thermomechanical coupling. This paper reviews many of the major achievements
on this subject.

The paper opens with a short review of historical milestones on this
subject. A theoretical model is then reviewed, including both conservation
laws and constitutive models for certain classes of solids. The paper
concludes with a discussion of recent attempts to solve the inelastic coupled

thermomechanical field problem.




INTRODUCTION

The phenomenon of coupling between thermodynamic and mechanical processes
in solid media was first predicted by ODuhamel [1837]). The significance of
this coupling depends on the type of material behavior encountered during the
process, as well as the time required to perform the process. In the case of
elastic solids, this coupling is for most materials insignificant except under
conditions wherein inertial effects are not negligible. However, in inelastic
media circumstances may arise wherein this coupling is significant even under
quas i-static conditions.

This phenomenon can be illustrated with a simple experiment: take a coat
hanger and bend it until permanent deformations occur. Now note that
additional mechanical energy must be supplied in order to restore the coat
hanger to its original configuration. Since mechanical energy must be applied
throughout the entire process, the question becomes: where hdas the mechanical
energy gone? The answer can be found by repeating the process several times
and then touching the coat hanger where the permanent deformations have
occurred. Of course, anyone who has ever performed this experiment knows that
the coat hanger heats up, so that it is clear that at least some of the
mechanical energy has gone into heat.

While the above example represents a somewhat simplistic viewpoint of
thermomechanical coupling, it nevertheless verifies the existence of the
phenomenon, and whereas this example is of purely academic interest, there are
numerous physical situations occurring in science and engineering today
wherein this coupling may be so significant as to be unavoidable in order to
accurately model mechanical response. This paper endeavors to lay out the

importany developments that are necessary in order to go about solving a




problem involving thermomechanical coupling. This is accomplished in three
parts: a historical review; theoretical foundations; and applications of the

theory for certain problems.
HISTORICAL REVIEW

Historically, the foundations of continuum mechanics appear to have been
formulated just after the turn of the nineteenth century at the Ecole
Polytechnique in Paris. Although their research did not appear in print until
sometime later, two students of Laplace appear to have successfully formulated
the boundary value problem for isotropic linear elastic media by the year 1822
[Navier, 1827, Cauchy, 1823]. Navier is credited with the initial formulation
of the field problem, but Cauchy was the first to introduce the concept of
stress. At the same time, Fourier was proposing a model for the transfer of
heat [Fourier, 1822]. These early models did not recognize the coupling
between mechanical and thermal energy.

It remained for Duhamel to propose the first model of thermomechanical
coupling in 1837 [Duhamel, 1837, 1838]. Thereafter, the fundamental advances
in thermodynamics by Caratheodory [1909], as well as the research of Neumann
[1885] provided further credence to the theory of thermomechanical coupling,
so that by the start of the first world war this phenomenon was well known in
elastic media [voigt, 1910]. .

During the first quarter of this century the phenomenological theory of
plasticity was solidified by a number of scientists including Prandtl [1924],
Von Mises [1913), and others. These achievements in plasticity helped to
spawn an interest in thermomechanical coupling in inelastic solids, such as

the landmark experimental works of Farren and Taylor [1925] and Taylor and




Quinney [1934]. These works demonstrated that nearly all of the hysteretic
loss in elastic-plastic solids is converted to heat. These experiments have
been verified by more recent and precise experiments [Halford, 1966, 1987;
Dillon, 1962, 1962, 1966; Tauchert, 1967, Tauchert and Afzal, 1967; Kratochvil
and DeAngelis, 1971].

Although great advances had been previously made in the theory of
thermomechanical coupling, the necessary framework to construct a theory
applicable to inelastic solids did not appear until the 1950‘'s. The first
work appears to have been reported by Biot [1956], utilizing developments in
irreversible thermodyramics achieved by Prigogine in the late 1940's [1947].
This paper was then followed by a number of works dealing with thermodynamics
of coupled thermomechanical processes in inelastic solids |Boley and Weiner,
1960; Coleman, 1964; Coleman and Gurtin, 1967; Schapery, 1964, 1964; Olszak
and Perr>yna, 1968; Green and Naghdi, 1965; Dillon; 1963] most notably those by
Kratochvil and Dillon [1969, 1970], and Lehmann [1972, 1977, 1980). 1In the
following section a general formulation of the field problem as constructed by

these authors is reviewed.
THEORETICAL FORMULATION

Consider a continuous domain with interior V and boundary B. The body
V+B.may be either simply or multiply connected. The objective is to predict
to a predetermined degree of accuracy the mechanical response (such as
deformation field) of the body to some arbitrary input. It is assumed that
although thermal effects on mechanical properties may be significant, electric
and magnetic effects produce negligible mechanical response [Coleman and Noll,

1963]. Furthermore, in the current model development, it is assumed that all




deformations are 1infinitesimal (although the theory applies with minor
modifications to wmedia undergoing finite deformations). Under these
conditions it 1is postulated that the following physical quantities are
necessary to characterize the thermomechanical response at all points x, and

for a'l times t in the body V+B [Coleman and Noll, 1963]:

1) the deformation field

uy = “i(xk't)

2) the stress tensor

%55 = o‘ij(xk’t)

3) the body force per unit mass

fi= fixot)

4) the internal energy per unit mass

u=u(xk,t)

5) the heat supply per unit mass

r=r(xk,t)

6) the entropy per unit mass

s=s(xk.t)

7) the absolute temperature

T=T(xk,t)




8) the heat flux vector

q = qi(xk’t)
and ~

9) the mass density

D=D(xkot)

Also, recall that the deformation field uj is related to the infinitesimal

strain tensor by

cij z %(ui’j+ uj’i) (1)

Statements 1) through 9) above, along with equation (1) describe 32 state
variables to be determined for each material point and at all times in order
to characterize the state of the body V+B. Now consider what is available to

obtain the 32 state variables postulated above:

1) Conservation of mass (assuming infinitesimal deformations in a closed

system):

2 o @

+ of. = 961 (3)




3) Conservation of angular momentum (assuming no body moments):
0si = 044 (4)

4) Conservation of energy:

. - . .

5) The entropy production inequality:

. q; :
oS + (—%).1 - E% >0 (6)

When tallied, the above are a set of seventeen equations and one
inequality. Since the number of available equations (17) exceeds the number
of state variables (32), one must assume that additional equations are
required in order to produce a complete model. On reflection, this would seem
obvious due to the fact that none of the above equations recognizes the
material makeup of different media. In other words, if the information
already supplied were sufficient to describe the state of a body, two
different bodies of identical shape but different makeup (such as steel and
silly putty) would respond the same to identical inputs. Since this is
obviously not the case, it will be necessary to construct additional equations
describing the material makeup (or constitution) of the body.

In order to accomplish this, first recall the 32 unknown quantities to be

determined: u.,

i aij' fi' P, U, qi' s, r, T, and Eij.

In physical practice the field variables f; and r are normally specified




as input data. However, suppose that as a thought experiment the variables uj
and T are specified. It is common to call these variables the independent
variables. However, it is preferable to call them “"specified variables" since
all of the state variables are in fact independent of one another. Although
any four variables could be chosen, it is propitious to choose u; and T
because they are directly measurable quantities in laboratory experiments.
This leaves a total of 32 (variables) minus 17 (field equations) minus 4
(specified variables) or eleven equations to be determined.

These last eleven equations are termed constitutive equations. In order
to obtain a complete solution, then, it is possiple to proceed in the

following stepwise fashion:

1) Specify as input variables uj = ui(xk,t), T-= T(xk,t) at all points in V+B,

thus reducing to 28 unknowns;

2) utilize the conservation of angular momentum equations (4) to symmetrize

the stress tensor, reducing to 25 unknowns;

3) use strain-displacement equations (1) to obtain €540 thus reducing to 16

unknowns;

4) use the conservation of mass equation (2) to ‘determine p, reducing to 15

unknowns;

5) assume that the following eleven equations can be determined at all points

in V+B:




053(mat) = 04 58ep, (xpat)s Tlxut), gy (xput)) (7a)
U(xgt) = uleq (xpet)s T(xt), g, (x 1)) (7b)
S(xpat) = ste (xpat)s Tlxat)s gy (xp,t)) (7¢)
Q5 (xpet) = G5l (xput)s TOxput), g, (xput)) (79)

where { } signify history dependence, spanning the interval of time between
which the quantities are initially known and the current time of interest, and
gksT.k. Note that €54 is utilized instead of u; in order to exclude

J
dependence on rigid body motions;

6) use the conservation of linear momentum equations (3) to determine f;,

reducing to 1 unknown;
7) use the conservation of energy equation (5) to determine r; and
8) impose entropy production inequality (6).

Thus, the constitutive equations (7), subject to the constraints imposed
by the entropy production inequality, compris; a sufficient number of
equations to solve the boundary value problem of interest when adjoined with
the other seventeen equations described above. .The above procedure is
impractical for actually solving problems analytically because in practice one
cannot normally specify uj and T a priori at all points in V+B. The point of

the method is to form a reasonable approach for constructing the general form




of constitutive equations (7). Once the precise form of these equations has
been determined, it is then possible to utilize the most expedient solution
procedure for the problem at hand.

Unfortunately, the form of equations (7) is still quite general, and
further constraints are available only via the entropy production inequality,
physical intuition, and experimental evidence. Since the 1last is often
cumbersome and expensive, the first two should be utilized to maximum
advantage.

Note that although higher order spatial derivatives in the displacement
field ui(xk) and temperature T(x,) could in principle be includea in
constitutive equations (7), their inclusion would yield a non-local theory.
Such a non-local theory is generally only necessary when the scale of the
microstructural features of the medium is large relative to the boundary value
problem of interest. It will be assumed in the balance of this discussion
that all microstructural features are very small, thus rendering a local model
acceptable. Note also that equations (7) are not equations of state, since
fhey require information at times other than the current time. Thus, the
inclusion of time derivatives would be redundant.

Constitutive equations (7) are called the functional formulation.

Alternatively, we could prépose an internal state variable (ISV) formulation:

o3 = °15(e Tgomk) (8a)
u = u(ek],T,gk,uE]) (8b)
S = S(Ck]sTogerE]) (8C)




q'i = qi(“k]:Togkoa":]) (8d)
&?j = n?j(uk],T,gk,nt]) n=l,...,n5 p=l,...,n (8e)

where n is a sufficiently large number to characterize the material at hand.
Equations (Be) are called internal state variable (ISV) evolution (or growth)
laws. From the above description it can be inferred that an internal state
variable is any state variable which cannot be obtained from an equation of
state in terms of the specified variables (u; and T). Instead, it must be
obtained from an evolution law which is necessarily a differential equation in
time.

It can be shown that when equations (8e) are continuously integrable in
time the above are a special case of the functional formulation described by
equations (7) [Lubliner, 1972].

Although constitutive equations (8) " satisfy the principles of
equipresence, determinism for stress, and local action, they do not actua]]}
satisfy the principle of material frame-indifference, but are in approximate
agreement for infinitesimal displacements.

Now, to summarize, the problem is to solve for the 32+9n state variables
To obtain these quantities,

Ujs 0540 Fi0 0y Uy G40 Tu S, Ty €40 and an

3’ 1 iy
equations (1) through (5), (8) and inequality (6), or 28+9n equations are

available, together with appropriate thermal amd mechanical boundary

conditions. Since the remaining four degrees of freedom (f; and r) can be

specified, this formulation constitutes a well-posed boundary value problem.
Constitutive equations (8) represent a general framework which is a
formidable task to quantify for each material. Fortunately, there are two

steps that can be taken before it becomes necessary to proceed to the




laboratory and perform (usually expensive) experiments. First, it is
necessary to satisfy the entropy production inequality, and this will provide
constraints on the allowable form of equations (8). Second, it is possible to
perform “thought” experiments imposing such restrictions as material symmetry
which will further constrain the form of equations (8).

To perform these two steps, first define the Helmholtz free energy:
h = u-Ts (9)

Thus, the free energy represents the recoverable energy during any proess.
Note that due to the above and definition (8), the Helmholitz free energy may

be written as follows:
h = h(ek]iTogkoqt]) (10)

Therefore, according to the chain rule of differentiation

. _3h - 3h - ah . 3h -y
h= e, k1 YT Y 39, %t T % (11)
ack]

Thus, solving (9) for u, differentiating in time and substituting this result

into (5) results in

- ql','i + pr (12)

o(h + Ts + Ts) 943 €43

Finally, substituting (12) into (11) and this result into entropy production

inequality (6) gives




Il N EE EE e IIIJ\ |mE B I B B B B B B D B e .

M ah
Logj{egyoToggaoyy) - o3¢

€

u .
1J(€k]’T'gk’°k1)'€ij

ah :
lp ET(ck]’T'gk’“;]) + DS(Ck]:Tﬁgk'GE])]T
2h My 14
- o agi(‘kl’T'gk’°k1)]gi

3h BN u
[ G Tegee) 165 5(50 Toggeyy)
1]

- lqi(ik].Tagk’aa])/Tlgi 20 (13)

I I P 67, and g; are taken outside the

where the specified variables ¢.. ij

1)

brackets.
Thermodynamic constraints on constitutive equations (8) are now obtained
in a manner similiar to that employed by Coleman and Mizel [1963]. To do
this, note that inequality (13) must hold for any and all processes.

Therefore, important constraints can be obtained by considering several

thought experiments. For example, at time t=ty;

|
x
"

THOUGHT EXPERIMENT I: a) CASE A: let éij’ T, g; = 0, él = k) = constant; or

b) CASE B: let éij’ T, g, constant.
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It follows that
ah
" ag] (epq(ty)s T(t))s g, (t,)) - ky 2 0 and

%3; (e (tg)s T(ty)s g (ty)) - (-kq) 2 0 =>

ah_
agl
Similarly,

=0

3h 0o e b
TP =0 => h-h(ck],T,ok]) (14)

and the above must hold for any and all processes since Ujs €540 T, and g; are

specified (and mutually independent) state variables.

THOUGHT EXPERIMENT II: 1let 9is éi’ T =0. Similarly, it follows that for

all processes:

. . 3h - u
P T P o55(ekqsToeyy) (15)

Note that although (15) is similar to the result obtained for elastic
materials, h is not a potential for the stress tensor for this class of

materials since the inclusion of the internal state variables, al

jj» causes

the Helmholtz free energy to be path dependent.

THOUGHT EXPERIMENT III: let 9y éi’ éij = 0. It follows that for all

processes:




3h
s = - T => s:s(;ij,T,ot]) (16)

Due to equations (14) through (16) inequality (13) now reduces to
ah n
- e/, 855 -4,9,/T20 (17)

ao? 1J

ij

where the first term represents interna) dissipation and the last term is heat
conduction dissipation. Note that the internal dissipation cannot be set to
zero because although the rate of change of the internal state variables may
be specified, the actual internal state at any time cannot be specified.

It can also be shown that [Coleman ar) Mizel, 1963]
q; = -kj5 95 + H.O.T. (18)

where the thermal conductivity tensor, kij' may depend on €ke? T, and °Ea'
Thus, if internal state variable evolution laws (8e) can be determined
experimentally, the problem will be comp]ete]y‘specified by construction of
the Helmholtz free energy function (equation (10)).
Now consider a special case of equation (10) which is found to be

suitable for many materials. Let
h = h(c,1,Tyel ) (19)
k1* **k1

where eI called the inelastic strain tensor, is equivalent to oi] and is

k1’
in the case of metals a locally averaged representor of dislocation
movement. A material behaving according to equations (8) and (19) is termed a
viscoplastic material [Kratochvil and Dillon, 1970].

Expanding h in a second order Taylor series in its arguments gives




-1 ' I I
h = JIR+BT'+C, e #4D, 5i0e 550 %E s 584 5*F 13 cs s

I 1 . I ., 2
64 51€ g gekn i 3057 g0 5T KT (20)
where
T-T
) [ (21)
T0

and T0 is the reference temperature at which no strain is observed.

Substituting the above into (15) results in

o;; = C,.+D F

I .
T T (22)

ik 1%k k1517
Experimental evidence suggests that 1in viscoplastic materials, during

isothermal processes, the inelastic strain produces negligible free energy, or

= - (23)
acI d€
] 1]
so that, at constant temperature
3h - ah .1 ah . .1
= €5 + €iq = o (€55 = €42) (24)
a‘ij ij 3€§j ij acij ij i3




Substituting (20) into (23) results in

1
Eis * Figatia * Gyt
- F el - H,.T'
ijk1k1 ~ Hij
Therefore, by inspection
i R
Eij - -cij = Oij
Fiskr = = D
Gik1 = = Figkr = Diji
L= = Hi5 2 Dyt

+ 1

13

Tl

== Gy 7 Dy

(25)

(26)

(27)

(28)

(29)

It follows that equations (22) may be written

_ R I
055 = 933D gkal ek B (T-To) ]

R
where o j

(30)

is called the residual stress at zero strain and temperature change,

Dijk]’ is the elastic modulus tensor and Biq is called the thermal expansion

tensor.

special case of (30) by differentiating (30)

The Prandtl-Reuss equations |[Prandt1,

1924] can be obtained as a

in time and substituting an

appropriate evolution law for the inelastic strain tensor.

To obtain the coupled heat conduction equation differentiate (9) in time




and substitute into the first law of the thermodynamics (equation (5)) te

obtain:

p(ﬁ+TS+T§) =g + pf‘ (31)

15545 7 95,3

Substituting (11) into (31) gives
ah . ah . .
- (o‘ij -p*a—‘_:'ij) cij+p (ﬁ.—-rs) T+ pTs
h - . .
tooo 9y te— a;: +Q: .- pr=20 (32)
i

Thus, utilizing (14) through (16) results in

bTe+ oM a0 Lo i=0 (33)

[+ 34
(.34
[72]
[-%4
w
3

s =22 ..+ 2T+ N : (34)
3£ij ij al s, 1

Substituting (35) into (34) thus gives

3s . 3S - 3s n oh n
oT — é..+poT =T+ T = L+t D — Q.
a‘ij ij 3T 3°?j i 3a?J ij
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Finally, utilizing (16) gives

2 2 2
3 h . o h = a3 h .n ah .n
ol .. = pT =T+ oT G . +p —
de; .31 ~ij n iJ n ij
ij aT aoijaT aaij
= -9t pT (36)

2 90 . 2, .
ah .1 s h .1 ij . 3"h
g aal M3 T T 301 aT My T ! aT T T aTZ !
ij ij
- (ky3 T ) g-er=0 (37)

Substituting (20) into the above and utilizing (26) through (29) gives

.1 . .
- 95545 * Oigia B Tlegy - g5
+0C, T (kg T j) 4 =oF =0 (38)

where Cvs azh/aT2 is the specific heat at constant volume. The above is the

coupled heat conduction equation for anisotropic thermoviscoplastic media.

Note that for an elastic material é:j =0 and the above reduces to the

coupled heat conduction equation for linear thermoelastic media. Since terms
1 and 2 could be large even under non-inertial conditions, they should be
considered carefully in inelastic problems.

In the case of uniaxjial stress states the inelastic coupling term reduces

to oeI , which is the rate of hysteretic energy loss, as shown in the cyclic

stress-strain curve in Fig. 1. As pointed out by Taylor and Quinney |[1934],




not all of this energy is transformed into heat. For example, some mechanical
energy may be lost to dislocation rearrangement, phase change or microfracture
processes. Thus, Lee [1969] has proposed that the inelastic loss term should
be modified to

noijél!j .

(39)
where n<l is a positive scalar function of inelastic deformation. Similar
expressions have been proposed by Lehmann [1979], Raniechi and Sawczuk [1973],
Mroz and Raniechi [1976] and Nied and Batterman [1972]. However, due to the
experimental difficulties encountered in measuring such small energy losses,
this remains an open issue at this time. Since for stable materials the term
in equation (39) is never negative, setting n=1 will slightly overestimate
the predicted temperature.
For the case where the material js initially isotropic and

viscoplastically incompressible (;ik=0), equation (38) reduces to

kT

= pcvi + p; + (3x + 2u)8T7 (40)

'3 ofkk = "°43%i;

Thus, it can be seen that whereas for the elastic case (é§j= 0) an
thermomechanical coupling in isotropic materials vresults from bulk
deformations, heating can occur in shear in inelastic media.

One can now briefly review the thermoviscoplastic boundary value problem
for the case of infinitesmial deformations. The following state
variables: o4jr €440 T, u;, and a?j. or 16+9n variables are sought. The
variables u, s, h and q; are not normally included in this 1ist since they

need not be determined in order to perform stress analysis. To obtain these




16 + 9n variables the following equations are utilized:

1) conservation of linear momentum

°5i,j * efi = ey (a1)
2) strain-displacement equations
€:: = 1 (u +u, ) (42)
iJ 2 ', 3
3) stress-strain-temperature relations
0. = o 4+ 0 e - ek - B (T-T )] (43)
ij = %5 T Yigatta Ttk T Bttt
4) ISV evolution laws
‘N _ N oooew
%3 = Bijleke T 9s o0 o) (44)
5) conservation of energy
.1 . -1 : .
- 955655 * Dijk]BkIT(‘ij - eij) +oCT - (kijT,j),i -pr=0 (45)
Thus, these are a total of 16+9n equations. The variables o, fis Tos T

R . n .
and %43 are specified data, and Dijk]’ B Qij’ kij' and C, are input

material properties. The above equations, together with appropriate. boundary
conditions, constitute a well-posed boundary value problem.
Unfortunately, n?j may be verx difficult to construct based on experimental
observation, and the introduction of nonlinearities via n?j causes solutions

to be very difficult to obtain analytically.




APPLICATIONS OF THE THEORY

Few applications of the theory have been reported in the literature for
the case where inelastic material behavior occurs [Oden et al., 1973,;
Cernocky and Krempl, 1980; Argyris et al., 1981; Nicholson, 1984; Allen, 1985,
1986; Allen and Haisler, 1986; Van der Lugt, 1986; Hsu, 1986; Banas et al.,
1987; Ghoneim, 1986; Ghoneim and Dalo, 1987; Ghoneim and Matsuoka, 1987].
This is due in part to the fact that the elastic and inelastic coupling terms
in equation (45) are in many cases for all practical purposes negligible.
When this occurs, the problem is said to be one-way coupled, since equation
(45) becomes a single equation in temperature which can be solved
independently of the mechanical problem and the resulting temperature field
can be utilized as input to equations (43) and (44). |
. There is a second reason that few applications of the theory have been
reported: because they are extremely difficult to work with. This is due to
a number of reasons, not the least of which is that there are several sources
of nonlinearity in the resulting problem. The most common nonlinearities
occur in the ISV evolution laws (44), and these are often numerically stiff
for poly crystalline metals. Additional sources of nonlinearity may arise
from radiation boundary conditions and large deformations. In fact, the
nonlinearities appear to preclude analytic (closed-form) solutions to the two-
way coupled problem in all cases reported to date with the exceptions of Lee
et al. [1980], Reddy [1976), and Mukherjee [1973], and in these three cases
the applications are to linear viscoelastic media. Thus, the two-way coupled
nonlinear problems lends itself well to computational solutions, in particular
the finite element method. The balance of the paper then deals with this

procedure and results obtained using this approach.




Chronologically, the first computational algorithm to appear in the open
literature was reported by Oden et al. [1973]. While the authors do not
elucidate in great deal the algorithm used, they do introduce a time marching
scheme which allows partitioning of the coupled equations during each time
step. This procedure, which appears to be wused by most subsequent
researchers, bears further discussion here.

In the method proposed by Oden et al. {[1973] the governing filed
equations are first recast in a weakened variational form and applied over a
sub-domain denoted as an element., It is then assumed that the coupling terms
in equations (45) are negligible over a small time increment, and this term is
dropped from the variational heat equation. Orthogonal basis functions are
then introduced as an approximation for the displacement and temperature
fields in each element during the time increment. The resulting equations are

of the form:

1 T

[Ml{u} + [K]{au} = {F} + (F'} + {F") (46)

and

(K 1Ty + [C1D = @ + @} (47)

Equations (46) are the mechanical equations and equations (47) are the thermal
equations. The ordinary time derivatives in equations (46) and (47) are
obtained using finite differencing. The coupling enters the mechanical
equations via {FT], which depends on the temperature field. Conversely, the
coupling enters (47) via {QI) , which depends on egj. On each time step

this term is initially asumed to be zero and the resulting deformations are




calculated. An iterative procedure is then used during the time step to
account for (QI).

Unfortunately, because the numerical results obtained by the authours 1o
not contain a comparison of two-way coupled and one-way coupled results, no
results are reviewed here. However, the approach utilized in this paper has
been utilized by most succeeding authors.

Cernocky and Krempl proposed a coupled theory in 1980, and while the
reported work considers only spatially invariable responses, it does represent
the first attempt to utilize a recently developed rate dependent viscoplastic
constitutive model in a two-way coupled analysis.

Argyris et al. [1981] produced perhaps the most exhaustive study of
computational schemes for solving the two-way coupled problem. Like Oden, the
authors utilize the semi-discretized finite element method for both the
thermal-and mechanical analyses. Furthermore, they utilize partitioning, with
the thermal analysis performed first on each time step and then utilized to
approximate the mechanical response. Although they point but that for weakly .
coupled problems no interaction is required on each step, they include in
their algorithm an iterative procedure for strongly coupled applications.

The authors discuss in some detail the importance of the so-called " g -
effect,” in which the effect of thermal contraction causes a perceived
“"heating effect." This effect can be seen by first defining the elastic

strain tensor as follows: .

, I
E,ij = cij - eij - Bij(T-To) (48)

Thus, for an inelastically incompressible material contracting the above and

rearranging results in




E

Differentiating the above in time and substituting into (40) gives

~ . [ E .I
kT’i‘i = oCT + pr + (3 + Zu)aToekk - noy €45 (50)
where
C = o [1+3(3x + 2u)82T f] (51)
v - )

v

Thus, the thermal expansion effect can cause the apparent heat capacity
6 to be magnified considerably. The authors advise that this term should be
handled in the form described by equation (50) because the form given in
equation (45) can lead to numerical instability of the time marching scheme.

An interesting numerical result is obtained in the paper by Argyris et
al. [1981]. The time marching iterative scheme described above is applied to
a thick-walled cylinder that is pressurized with an internal pressure
P; = 200 N/mn2 and subsequently quenched from an initial temperature T=320°C
to a final temperature T=20°C. A simplified model is used for the ISV
evolution laws. Temperature, radial displacement, and equivalent stress
histories are shown at the outside wall in Figs. 2 through 4. Similar results
are obtained at the inside wall. It is interesting to note that the coupiled

thermoviscoplastic result is significantly different at long times from the

uncoupled result, thus indicating the importance of including two-way coupling
in relatively slow processes such as are found in this example. However, the
authors point out that a substantial part of the coupling results from the

g effect.




Beginning in 1985, Allen published a series of three papers dealing with
thermomechanical coupling in viscoplastic uniaxial bars. Using the
viscoplastic constitutive theory proposed by Bodner and Partom [1975], he
predicts the stress in a uniaxial bar as shown in Fig. 5 for the input strain
history shown. Since the uniaxial bar is assumed to be adiabatic, the
response is spatially invariable, and the predicted temperature shown in Fig.
6 represents an upper bound of the actual temperature for n=1 [Allen, 1985].

Recognizing that there is significant heat loss in a uniaxial bar, Allen
{1986] produced a one-dimensional fully coupled finite element model for the
uniaxial bar problem. The spatial discretization was accomplished by assuming
a second order displacement function in each element, along with a first order
temperature field. This insured numerical stability and accuracy via
compatibility of the total and thermal strains in each element. Unlike the
computational approach taken previously [Oden et al. 1973; Argyris et al.
1981}, the author chose to retain full coupling in the governing equations so

that the resulting finite element equations are of the form
UL
K155} = {(aF) (52)

Thus, unlike equations (46) and (47), the temperature and displacements occur
on the left-hand side of the equations. Unfortunately, this procedure results
in a highly complex algorithm which is sufficiently complicated that existing
uncoupled codes cannot be utilized. For example, the stiffness matrix [K] is
not symmetric. The author found this approach cumbersome and does not
recommend it, especially for multidimensional problems.

Using the above computational scheme Allen compared results for a fully

insulated uniaxial bar to one imbedded in massive grips at 1005°K. The




resulting predicted temperatures for two different monotonic strain rates are
shown in Figs. 7 and 8 [1986). As expected, the non-adiabatic temperature
change is bounded by the adiabatic result. A typical plot of temperature vs.
axial location in the bar, as shown in Fig. 9, demonstrates that the
temperature gradient occurs in a very small boundary layer near the grip. The
final result in this paper, chown in Figs. 10 and 11, is for the case of a
uniaxial bar subjected to low cycle fatigue. It is found that, whereas the
temperature rise is approximately 3.7°K for each cycie in the adiabatic case,
the bar with fixed temperature at the ends heats up only about 1.0°K per
cycle, thus indicating that flux of heat at the boundary can significantly
diminish the effect of thermomechanical coupling.

In the third paper of the series, Allen and Haisler [19839] included the
effects of radiation boundary conditions on the cylindrical surface of the
bar. They determined that inspite of the significant heat loss provided by
radiation boundary conditions, an aluminum bar subjected to cyclic loading as
shown in Figs. 12 and 13 experiences substantial heating both with anodized
surface (CASE II) and when painted with a high emissivity coating (CASE I).
The authors concluded from this research that material inelasticity in large
space structures should be considered carefully as a means of passive damping
because it is difficult to dissipate heat generated via thermomechanical
coupling.

Recent results have been reported also by Ghoneim and coworkers [Ghoneim,
1986; Ghoneim and Matsuoka, 1987, Ghoneim and Dalo, 1987]. Ghoneim uses
essentially the same finite element discretization procedure as that developed
by Oden. Using a simplified viscoplasticity model he obtains results for the
uniaxial bar problem [Ghoneim and Matsuoka, 1987) similar to that previously

obtained by Allen. However, he goes a step further by producing a two-




dimensional prediction of the response of a flat coupon during a compression
test. Figure 14 depicts effective stress and temperature contours in one
yuadrant of the specimen for sucessive strains ¢=0.3, 0.6, 0.9 and 1.2%,
respectively (Contour 1lines 1, 2, 3,... are 300, 350, 400,...MPa for the
stress and 0.0, 0.5, 1.0, 1.5°K,... for the temperature, respectively).

Ghoneim [1986] modelled a thick-walled cylinder similar to that
previously considered by Argyris et al. [198l1}. However, Ghoneim considers
the response of the cylinder to an instantaneous thermal pulse. Since the
time duration is very short, he points out that the predicted change in
temperature is strictly due to thermomechanical coupling. Figures 15 and 16
show the stress history and temperature history at the inner surface of the
cylinder (1E is the effective stress). The large difference between the
temperature predicted for the elastic and viscoplastic cases is remarkabie.

The final result to be discussed herein is due to Hsu [1986]. He uses
essentially the same fully coupled algorithum as that reported by Allen.
However, he has developed a two-dimensional finite element code using four-
node quadrilateral isoparametric elements. He models one quarter of a rod in
uniaxial tension and considers the temperature rise in the bar for a monotonic
load and unload sequence. As shown in Fig. 17, he reports the effects caused
by the n factor discussed in equation (39) ( a=l-n ). As expected, the
predicted temperature rise decreases with increasing A.

CONCLUSION

Significant advances in the theory and analysis of thermomechanical
coupling have been made in this century. However, although thermomechanical
coupling is now a well-known phenomenon in inelastic solids, several issues

remain open at this time. Among these are:




1) the thermodynamics of nonequilibrium processes have not yet been

clearly identified;

2) the relative contribution of the n factor is not yet resolved;

3) computational algorithms, though proposed, have not been studied for a

hroad array of probiems; and

4) the important issue of when coupling can be neglected has not been

resolved.

For these reasons, further research would appear to be fruitful on this

subject.
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Fig. 1. Hysteretic Strain Energy Loss During a Cyclic Uniaxial Test

Fig. 2. Temperature History at the Inside Wall of Quenched Cylinder
(Courtesy of Hemisphere Publishing)

Fig. 3. Radial Displacement History at the Inside Wall of Quenched Cylinder
(Courtesy of Hemisphere Publishing)

Fig. 4. Equivalent Stress History at the Inside Wall of Quenched Cylinder
(Courtesy of Hemisphere Publishing)

Fig. 5. Stress-Strain Behavior of IN100 at 1005°K (1350°F) Under Cyclic Load
with Stress Relaxation (Courtesy of Pergammon Journals Ltd.)

Fig. 6. Predicted Temperature Change for IN 100 at 1005°K (1350°F) Subjected
to Cyclic Load History Shown in Fig. 5 (Courtesy of Pergammon Journals Ltd.)

Fig. 7. Predicted Temperature vs. Absolute Strain for Monotonic Deformation
Histories (& = 20.00142 sec'l) (Courtesy of John Wiley & Sons, Ltd.)

Fig. 8. Predicted Temperature vs Absolute Strain for Monotonic Deformation
Histories (& =x0.000142 sec'l) (Courtesy of John Wiley & Sons, Ltd.)

Fig. 9. Temperature vs. Spatial Location for Various Times for Constant
Strain Rate £=0.00142 sec™> (x=0.3175 is the midpoint of the bar) (Courtesy
of John Wiley & Sons, Ltd.)

Fig. 10. Stress-Strain Curve and Strain Input Curve for Cyclic Load (Courtesy
of John Wiley & Sons, Ltd.) .
Fig. 11. Temperature Change at x=L/2 vs. Time for the Cyclically Loaded Bar
Described in Fig. 10 (Courtesy of John Wiley & Sons, Ltd.)

Fig. 12. Cyclic Stress-Strain Curve at x=L/2 for Case I Coating Loaded at
5Hz. (Courtesy of American Institute of Aeronautics and Astronautics)




Fig. 13. Temperature vs. Time Curves at x=L/2 for Loading at 5Hz (Courtesy of
American Institute of Aeronautics and Astronautics)

Fig. 14. The Predicted Stress and Temperature Change Fields for the
Compression Test at Different Stages of Loading (Courtesy of Pergammon
Journals Ltd.)

Fig. 15. Transient Response of the Radial and Hoop Stresses at the Inner
Surface of Thick Walled Cylinder (Courtesy of Hemisphere Publishing)

Fig. 16. Transient Response of the Effective Stress (xE) and Temperature at
the Inner Surface of Thick Walled Cylinder (Courtesy of Hemisphere Publishing)

Fig. 17. Temperature Rise in the Rod Induced by Applied Mechanical Load
(Courtesy of Allen & Unwin, Inc.)
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ABSTRACT

Over the past two decades a number of thermomechanical constitutive
theories have been proposed for viscoplastic metals. These models are in most
cases similar in that they utilize a set of internal state variables which are
locally averaged representors of microphysical phenomena such as dislocation
rearrangement and grain boundary sliding. The state of development of several
of these models has now matured to the point that accurate theoretical
solutions can be obtained for a wide variety of structural applications at
elevated temperatures. |

The purpose of this paper is threefold. First, the fundamentals of
viscoplasticity are briefly reviewed and a general framework is outlined.
Second, several of the more prominent models are reviewed in some detail.
Finally, some comparative results are given to experimental evidence for a few
of the models, and conclusions about the efficacy of the models are drawn from

these comparisons.




INTRODUCTION

Since World War II there have been an increasing number of circumstances
wherein structural materials are required to operate at very high
temperatures. Perhaps the first large scale example of this occurred in the
nuclear power industry, wherein temperatures 1in excess of 2000°F are
common. Recently, interest in the National Aerospace Plane, wherein
hypersonic shock interaction causes predicted iemperatures in excess of
3000°F, has enhanced interest in this subject. The quest for more efficient
gas turbines has also forced operating temperatures up. Thus, since
experimentation in such hostile environments is extremely expensive, it is
desirable to produce accurate theoretical models for structural components
constructed from viscoplastic metals.

In a1l of these cases the structural materials commonly in use experience
a substantial amount of inelastic constitutive behavior. Indeed, they are
history, temperature, and rate dependent, as well as highly nonlinear. Hence,
it is clear that any successful modelling attempt will be extremely complex in
nature.

The most recent advances in constitutive theories to predict the
inelastic behavior of structural materials have been the incorporation of the
effects of temperature and rate dependence into the stress-strain
relationships. The ability to predict the temperature and rate dependence of
structural materials used in elevated temperature applications is especially
important to the aerospace industry wherein substantial weight savings can be
accomplished if safety factors can be reduced by the use of accurate analytic
models. Most metals become viscoplastic, i.e., exhibit rate dependent
inelasticity at temperatures above about four-tenths of their melting

temperature. These materials are more intricate than elastic-plastic




f

materials in that the inclusion of rate dependence represents a significant
increase in complexity of the mathematical model required to describe the
observed material behavior. This is evident because in the classical rate-
independent plasticity theory of metals the only parameter required to
characterize the plastic strain is A, a history dependent scalar material
property that relates inelastic strain rate to stress through the flow rule,
which may be obtained experimentally from a single phenomenclogical uniaxial
stress-strain curve. However, when the material becomes significantly rate
dependent the uniaxial monotonic stress-strain curve is no longer unique.
Therefore, it becomes necessary to construct a mathematical equation
governing A. This equation can only be constructed by obtaining considerable
experimental information about the response of the material to changes in the
independent variables such as strain, strain rate, and temperature. The
experiments required to obtain this information are usually cumbersome and
expensive.

Historically, there have been two distinct approaches to the modelling of
inelastic materials: 1) the functional theory [1], in which all dependent
state variables are assumed to depend on the entire history of the specified
observable state variables; and 2) the internal state variable (ISV) approach
[2], wherein history depenaence is postulated to appear explicitly in a set of
ISV's. Lubliner [3] has shown that in most circumstances ISV models can be
coﬁ;idered to be special cases of functional models. Because the internal
state variables are readily identifiable in metals, most models currently
under development are of the ISV type. This form has the added benefit that it
is also usually more computationally tractable than the functional form.

This article will focus on several of these models which have shown

promise for predicting the complex stress-strain response of metals at




elevated temperature. After establishing the general framework for a
constitutive model wusing the ISV formulation, several state-of-the-art
thermoviscoplastic models will be reviewed along with examples of the mode!

predictions compared to experimental results.

SYMBOLS
°ij stress tensor
Dijka elastic modulus censor
€1y strain tensor
‘En creep strain tensor
‘in inelastic strain tensor
‘:n plastic strain tensor
Elz thermal strain tensor
a, drag stress
®34 back stress tensor
°zn general set of internal state variables
hZ’ h3 hardening parameters
Tos T3 recovery parameters
A jnelastic flow parameter
T temperature
%44 j damage tensor
o;j deviatoric stress tensor
a;ij deviatoric back stress tensor
Jz second deviatoric stress invariant
Wp rate of inelastic work = % ; é}j




GENERAL THERMOVISCOPLASTIC CONSTITUTIVE MODEL FRAMEWORK

The concept of ISV's, sometimes called hidden variables, was apparently
first utilized in thermodynamics by Onsager [4,5], and numerous applications
have been recorded in the literature over the last forty years [2,6-14]. A
general framework for an ISV formulation of a thermoviscoplastic constitutive
model can be developed by following the thermodynamic approach described by
Coleman and Gurtin [2]. Historically, attempts to model rate dependence began
with extensions of rate-independent classical plasticity theory. In these
attempts the inelastic strain was "uncoupled" into rate-independent plastic

and rate-dependent creep components to obtain

%5 © Dijka (eyy - ‘iz - ‘Ez - ‘Iz) (1)

Ultimately, these attempts failed due to the fact that rate-independent and
rate-dependent inelastic deformations are caused by the same microphysical
mechanism, predominately dislocation movement. Thus, & more salient approach'
evolved using an approach in which the plastic strain and creep strain are
"unified" into a single inelastic strain, Ein‘ The general form of the model
for a metal is thus described by the following stress-strain equation of
state:

i 1T
055 = Dijkaltke = Skp = Fkg)

(2)

Although the strain, € g? and the thermal strain, ‘In' are normally
specifiable, the inelastic strain tensor, representing a locally averaged
measure of the distance traversed by dislocations, is not. Therefore,
equation (2) must be augmented by an ISV evolution law (also sometimes called

the flow law) of the form:




Ey = A (ogg = aggy) (3)
where A is a complicated history dependent function of state. For example,
the Prandtl-Reuss equations [15,16] utilized in rate independent applications
may be obtained as a special case by differentiating (2) in time, substituting
(3) into this result, and setting uéij to zero.

For rate dependent circumstances, however, the egquations must be further

augmented by additional ISV evolution laws to account for the diffusive nature

of dislocation mechanisms at eievated temperatures. These are of the form:
&2 =hy (epps Ts °ﬁ2) =T ey To “tz) (4)
. - M H
5315 7 M3 (e To og) = 13 (e T o) >

where the drag stress, a,, is an ISV related to the number or density of

dislocations and the backstress, a,.., is an ISV related to the residual

3ij
stresses at the microstructural level produced by the dislocation
arrangement. The functions h, and h3 represent the hardening terms in the
drag stress and backstress, respectively, due to loss of dislocation mobility,
whereas the functions ro and r3 represent the recovery terms in the drag
stress and backstress, respectively, due to recovery of dislocation
mobility. In some applications it may be necessary to append an additional
internal variable, 444 called a damage parameter and representing the
effects of grain boundary sliding and microfracture [17-20].

The mathematical expressiohs for the ISV's and the flow rule, equations 3

through 5, are typically determined phenomelogically by curve fitting data




obtained from a prescribed set of complicatza experiments to this form. The
precise experiments required to obtain the models depend on the theory being
utilized. However, these experiments are typicaily complex in nature [21-
23]. Since they are normally performed at temperatures in excess of 1000°F,
they require that sophisticated furnaces be used, such as the one shown in
Fig. 1. In addition, many of the models require that cyclic tension-
compression tests be performed such as the one shown in Fig. 2, so that a
highly aligned testing machine is required in order to avoid buckling of the
specimens.
REVIEW OF CURRENT MODELS

In this section several of the more prominent unified models will be
reviewed, and because the uncoupled models possess limited modelling ability,
they will not be covered. The first concerted attempt to model the inelastic
strain rate in a rate-dependent setting appears to have been due to Bodner and
co-workers [17,18,24-36]*, and an indication of the complexity of this problem
is that they are still actively pursuing this model. Since 1975, there has
been a veripable explosion of models such as Hart [36,37], Miller and co-
workers [19,38-48], Valanis [49,50], Robinson [51-57], Walker and co-workers
[20,32,35,36,58,59,60), Kremp) and co-workers [61-66), Krieg and co-workers
[36,67], as well as others [68-78]. Doubtless there are numerous efforts we
have overlooked, and the authors apologize for any oversight on our part.

In a paper of this limited scope it is unrealistic to expect that an in-
depth review can be reported on each of the models. Therefore, we have chosen

what we hope is a reasonable and expedient dissemination method. First, we

*Although a promising model proposed by Valanis had been previously reported,

it was rate-independent at the time of Bodner's work.




will discuss each of the models briefly, and we have encapsulated a summary of
each of the models mentioned above (in uniaxial form) in Table I. Because
many of the models have appeared in several forms, in this table we have
chosen a relatively simpie version of each of the models. Second, we have
attempted to summarize the capabilities of the models in Table Il, and to
review the experimental requirements in Table 1II. Finally, we have
undertaken to discuss recent advances and review in somewhat greater detail
the models of Bodner, Miller, and Walker.

Because the scope of this paper is limited, we are unable to pursue all
of the important issues regarding this subject. Readers who are interested in
further study on this subject will find a far more detailed discussion of
recent advances in viscoplasticity in reference 36, as well as in the
bibliography at the end of this paper.

In this discussion the models are reviewed only in uniaxial form because
in virtually all cases they are converted to multiaxial form by using JZ
theory in conjunction with Drucker's postulate [79]. We should also point out
that we have utilized a common terminology due to the fact that each author
uses different notation.

Probably the simplest model to date was proposed by and Krempl and co-
workers [61-66]. Because this model does not contain evolution laws for the
back stress and drag stress, it is best used for monotonic loadings.

The model proposed by Valanis [49,50] is built on a single integral
framework which makes it quite different in form frca equations (2) and (3).
However, as pointed out by Schapery [80], when this so-called "endochronic"
theory is used with an exponential kernel function, the Prandtl-Reuss [15,16]
equations can be recovered. Although Valanis' model is actually capable of

producing much more general results, a single exponential is usually used, so




that it reduces to equations (2) and (3) when Laplace transformed in the
endochronic time scale. ‘

An interesting and potentially very useful model has been proposed by
Krieg, et al. [67]. The model appears to have been one of the first to include
both drag stress and back stress terms. However, the authors moved on to
other things and the model was not improved for about a decade. Recently, a
second generation of the model has been proposed [36].

Robinson [51-57] has proposed one of the most complex and advanced models
to date. His model is distinguished from the other current models both in
that it possesses a yield criterion similar t6 that used in classical
plasticity, and that it has been proposed in multiaxial form for orthotropic
media such as metal-matrix composites.

Hart's model [37] is distinguished by the fact that the drag stress is
assumed to be a constant, and it possesses an ISV called hardness which
affects the back stress evolution law. Recent advances of this model have

also been reported in reference 36.

Bodner's Model

As mentioned earlier, Bodner's model [17,18,24-36] appears to have been
the first viable unified model proposed for viscoplastic metals. Although
early versions of the model were somewhat primitive, it has remained at the
forefront of technology via timely modifications. The initial model did not
contain a drag stress, a3 and although the current version does include
one, it is included in a significantly different way from other current
models. Bodner calls it an anisotropic hardening parameter, ag, and it occurs
in the inelastic strain rate equation as a scalar variable. Thus, the

resulting evolution laws are:




! - ,—§ D, exp {-% (%lz"} sgn o (6)
lz 6y - Gy + a3 59N 0 (7)
a, -2, r
. . 2 2,1
a, = m [Z1 - ZI] wp - AL l———iI—-] (8)
. - °3,"2
ag = m, IZ3 Sgn o - ag sgn o) wp - A Z1 ITI] Sgn ag (9)

where Do. n, my, Zl' 22, A1s T1s my, 23, Az, and r, are material constants.

The flow law is exponentially based as seen in equation (6). The model

I Wp is a dynamic

recovery term for ag in  the isotropic growth law (8) and

gives a limiting strain rate in shear of Dy. The term -m12

- A Z1 [(a2 - 22) Zillrl is a static thermal recovery term. B is a uniaxial
representation of a second order tensor in the multiaxial state which models
directional or anisotropic hardening. ag is assumed to act as an isotropic
variable on an incremental basis. Equation (7) shows that Z can experience
large changes in magnitude due to the sgn o function as the stress changes
sign. This could cause numerical problems if the B variable is of the same
order of magnitude as the ay variable. The evolution law for B has the same
components as the evolution law for D.

Bodner's model is seen to use the rate of plastic work, Np. instead of
inelastic strain rate as the measure of work hardening. This is designed to
allow for better modelling of strain rate jump tests. The modification used
to account for the strain aging effects was patterned after Schmidt and

Miller's solute strengthening correction. The constant Z3 in the as evolution

law was written in the following form:

10




2y = 2, + If (&) (10)

1
£(el) = F exp - (202le 1) - Toa(d) 2, (11)

where F is the maximum correction, J is the strain rate of maximum correction,

and 8 is the width of correction.

Miller's Model

Miller's model [19,36,39-48] is probably the most complex model available
at the time of this writing. It is capable of accounting for a wide range of
physical phenomena, including solute strengthening and cyclic strain

softening.

Schmidt and Miller's evolution laws have the following form:

-1 . °3 \l.5n
e = B' {sinh ( ) }' osgn (o - a,) (12)
32 * Feo 3

Gy = Hy & - B (sinh (A lag] )" san (ay) (13)
. .1 Az . . 3,,n
Gy = Hy [1E1(C, + lag] - A a3) - Hy C, B' (sinh (A, o)) (14)

3
1 -1
Feo1 = Fexp { = ( 09 (le lg 0g (9,2, (15)

where B', n, Hys Aps Hy, Cz, Ay, F, J, and 8 are material constants.
The flow law has the form of a hyperbolic sine. This form was chosen to
model creep response better. The same form is found in the static thermal

recovery terms of the backstress and drag stress evolution laws. The drag

11




stress hardening term contains a hardening term, a dynamic recovery term, and
a term which couples drag stress hardening to backstress magnitude. These
three terms provide the proper cyclic, hardening, softening and saturation
behavior. The same non-interactive solute strengthening correction (Fsol) as

mentioned earlier is seen in this model.

Walker's Exponential Model

The growth laws for Walker's exponential model [20,32,35,36,58,59,60]

have the following form:

g -a

3)_1

-1 - ‘exp ( A sgn (O - 03) (16)

€

. R .
a3 =Ny - B (Ing + n, exp (-ngllog (BLy1 R+ ny  (17)
Ro

a, = D1 + 02 exp (-n7 R) (18)
1

R =[] (19)

where g, Nys N3s Ng» Ng, Ro’ Ngs Dl’ DZ' and n, are material constants.
This version of Walker's flow law is based on an exponential function.
The term n, éI is seen to be a work hardening term in the back stress growth
law.  The termay [ny +n, exp(-nsilog(IRl/Rol)Il R is a dynamic recovery
term. Negative strain rate sensitivity effects can be modelled with the
term n, exp (-n5|1og(|R|/Ro)|). Back stress thermal recovery is handlad by
the aj N term. Drag stress hardening is modelled through the D, exp (-n; R)

term. No provision is made for drag stress recovery in this model.
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COMPARISON OF MODEL PREDICTIONS TO EXPERIMENTAL RESULTS

In most cases, the models are described by a set of ordinary differential
equations in time which are mathematically "“stiff", The definition of
mathematical stiffness is that if the solution is expanded in an exponential
series in time, at least two of the eigenvalues will differ by many orders of
magnitude. A characteristic of stiff differential equations is that they
cannot be efficiently integrated in time by standard integration schemes such
as Runge-Kutta methods. Numerous intricate algorithms have been developed for
integrating equations (3) through (5) in time [81-86]. Oftentimes, it is most
efficient to use a simple Euler forward or backward scheme, where accuracy is
achieved by taking very small time steps, as shown in Fig. 3 [8l]. when
solving boundary value problems using the finite element method, it is
normally possible to obtain convergence on each displacement increment by
subincrementing the Euler integration at each integration point.

Many of the models mentioned in the previous section have been compared
both qualitatively and quantitatively to one another as well as to
experimental results for a variety of materials [87-92]). The accuracy of
several of the models is demonstrated for INCONEL 718 under two constant
strain rate conditions at 1100°F (593°C) in Figs. 4 and 5 [92]. A complex
load history is demonstrated in Figs. 6 through 8. In this example INCONEL
718 is subjected to the strain history shown at the bottom right hand corner
of each figure [92].

CONCLUSION

The complex task of predicting the response of viscoplastic metals has

now reached a state wherein reliable structural analysis is sometimes possible

(83]. However, the accuracy of predictions still depends on a number of

13




complicated factors such as material type, loading conditions, thermal

, environment; numerical accuracy, and the constitutive model being utilized.

Although this area of research has certainty reached fruition, it has not yet

reached full maturity.
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